Nonlinear Systems: Analysis, Stability, and Control
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1999
|
Schriftenreihe: | Interdisciplinary Applied Mathematics
10 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | There has been a great deal of excitement in the last ten years over the emergence of new mathematical techniques for the analysis and control of nonlinear systems: Witness the emergence of a set of simplified tools for the analysis of bifurcations, chaos, and other complicated dynamical behavior and the development of a comprehensive theory of geometric nonlinear control. Coupled with this set of analytic advances has been the vast increase in computational power available for both the simulation and visualization of nonlinear systems as well as for the implementation in real time of sophisticated, real-time nonlinear control laws. Thus, technological advances havebolstered the impact of analytic advances and produced a tremendous variety of new problems and applications that are nonlinear in an essential way. Nonlinear controllaws have been implemented for sophisticated flight control systems on board helicopters, and vertical take offand landing aircraft; adaptive, nonlinearcontrollaws havebeen implementedfor robot manipulators operating either singly, or in cooperation on a multi-fingered robot hand; adaptive control laws have been implemented forjetengines andautomotive fuel injection systems, as well as for automated highway systems and air traffic management systems, to mention a few examples. Bifurcation theory has been used to explain and understand the onset of fiutterin the dynamics of aircraft wing structures, the onset of oscillations in nonlinear circuits, surge and stall in aircraft engines, voltage collapse in a power transmission network |
Beschreibung: | 1 Online-Ressource (XXVI, 668 p) |
ISBN: | 9781475731088 9781441931320 |
ISSN: | 0939-6047 |
DOI: | 10.1007/978-1-4757-3108-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421421 | ||
003 | DE-604 | ||
005 | 20220831 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781475731088 |c Online |9 978-1-4757-3108-8 | ||
020 | |a 9781441931320 |c Print |9 978-1-4419-3132-0 | ||
024 | 7 | |a 10.1007/978-1-4757-3108-8 |2 doi | |
035 | |a (OCoLC)864054019 | ||
035 | |a (DE-599)BVBBV042421421 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 |a DE-739 | ||
082 | 0 | |a 515.64 |2 23 | |
084 | |a SK 960 |0 (DE-625)143275: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Sastry, Shankar |d 1956- |e Verfasser |0 (DE-588)121291057 |4 aut | |
245 | 1 | 0 | |a Nonlinear Systems |b Analysis, Stability, and Control |c by Shankar Sastry |
264 | 1 | |a New York, NY |b Springer New York |c 1999 | |
300 | |a 1 Online-Ressource (XXVI, 668 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Interdisciplinary Applied Mathematics |v 10 |x 0939-6047 | |
500 | |a There has been a great deal of excitement in the last ten years over the emergence of new mathematical techniques for the analysis and control of nonlinear systems: Witness the emergence of a set of simplified tools for the analysis of bifurcations, chaos, and other complicated dynamical behavior and the development of a comprehensive theory of geometric nonlinear control. Coupled with this set of analytic advances has been the vast increase in computational power available for both the simulation and visualization of nonlinear systems as well as for the implementation in real time of sophisticated, real-time nonlinear control laws. Thus, technological advances havebolstered the impact of analytic advances and produced a tremendous variety of new problems and applications that are nonlinear in an essential way. Nonlinear controllaws have been implemented for sophisticated flight control systems on board helicopters, and vertical take offand landing aircraft; adaptive, nonlinearcontrollaws havebeen implementedfor robot manipulators operating either singly, or in cooperation on a multi-fingered robot hand; adaptive control laws have been implemented forjetengines andautomotive fuel injection systems, as well as for automated highway systems and air traffic management systems, to mention a few examples. Bifurcation theory has been used to explain and understand the onset of fiutterin the dynamics of aircraft wing structures, the onset of oscillations in nonlinear circuits, surge and stall in aircraft engines, voltage collapse in a power transmission network | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Ljapunov-Stabilitätstheorie |0 (DE-588)4167992-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares System |0 (DE-588)4042110-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kontrolltheorie |0 (DE-588)4032317-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dynamisches Verhalten |0 (DE-588)4140475-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Rückkopplung |0 (DE-588)4050851-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Systemanalyse |0 (DE-588)4116673-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Linearisierung |0 (DE-588)4199872-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineares System |0 (DE-588)4042110-7 |D s |
689 | 0 | 1 | |a Rückkopplung |0 (DE-588)4050851-1 |D s |
689 | 0 | 2 | |a Kontrolltheorie |0 (DE-588)4032317-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Nichtlineares System |0 (DE-588)4042110-7 |D s |
689 | 1 | 1 | |a Dynamisches Verhalten |0 (DE-588)4140475-0 |D s |
689 | 1 | 2 | |a Systemanalyse |0 (DE-588)4116673-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Nichtlineares System |0 (DE-588)4042110-7 |D s |
689 | 2 | 1 | |a Linearisierung |0 (DE-588)4199872-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Nichtlineares System |0 (DE-588)4042110-7 |D s |
689 | 3 | 1 | |a Ljapunov-Stabilitätstheorie |0 (DE-588)4167992-1 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Nichtlineares System |0 (DE-588)4042110-7 |D s |
689 | 4 | 1 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
830 | 0 | |a Interdisciplinary Applied Mathematics |v 10 |w (DE-604)BV004216726 |9 10 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3108-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856838 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094465912832 |
---|---|
any_adam_object | |
author | Sastry, Shankar 1956- |
author_GND | (DE-588)121291057 |
author_facet | Sastry, Shankar 1956- |
author_role | aut |
author_sort | Sastry, Shankar 1956- |
author_variant | s s ss |
building | Verbundindex |
bvnumber | BV042421421 |
classification_rvk | SK 960 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864054019 (DE-599)BVBBV042421421 |
dewey-full | 515.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.64 |
dewey-search | 515.64 |
dewey-sort | 3515.64 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-3108-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04914nmm a2200793zcb4500</leader><controlfield tag="001">BV042421421</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220831 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475731088</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-3108-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441931320</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-3132-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3108-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864054019</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421421</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.64</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 960</subfield><subfield code="0">(DE-625)143275:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sastry, Shankar</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121291057</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Systems</subfield><subfield code="b">Analysis, Stability, and Control</subfield><subfield code="c">by Shankar Sastry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXVI, 668 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Interdisciplinary Applied Mathematics</subfield><subfield code="v">10</subfield><subfield code="x">0939-6047</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">There has been a great deal of excitement in the last ten years over the emergence of new mathematical techniques for the analysis and control of nonlinear systems: Witness the emergence of a set of simplified tools for the analysis of bifurcations, chaos, and other complicated dynamical behavior and the development of a comprehensive theory of geometric nonlinear control. Coupled with this set of analytic advances has been the vast increase in computational power available for both the simulation and visualization of nonlinear systems as well as for the implementation in real time of sophisticated, real-time nonlinear control laws. Thus, technological advances havebolstered the impact of analytic advances and produced a tremendous variety of new problems and applications that are nonlinear in an essential way. Nonlinear controllaws have been implemented for sophisticated flight control systems on board helicopters, and vertical take offand landing aircraft; adaptive, nonlinearcontrollaws havebeen implementedfor robot manipulators operating either singly, or in cooperation on a multi-fingered robot hand; adaptive control laws have been implemented forjetengines andautomotive fuel injection systems, as well as for automated highway systems and air traffic management systems, to mention a few examples. Bifurcation theory has been used to explain and understand the onset of fiutterin the dynamics of aircraft wing structures, the onset of oscillations in nonlinear circuits, surge and stall in aircraft engines, voltage collapse in a power transmission network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ljapunov-Stabilitätstheorie</subfield><subfield code="0">(DE-588)4167992-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares System</subfield><subfield code="0">(DE-588)4042110-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches Verhalten</subfield><subfield code="0">(DE-588)4140475-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rückkopplung</subfield><subfield code="0">(DE-588)4050851-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Systemanalyse</subfield><subfield code="0">(DE-588)4116673-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Linearisierung</subfield><subfield code="0">(DE-588)4199872-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineares System</subfield><subfield code="0">(DE-588)4042110-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Rückkopplung</subfield><subfield code="0">(DE-588)4050851-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineares System</subfield><subfield code="0">(DE-588)4042110-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Dynamisches Verhalten</subfield><subfield code="0">(DE-588)4140475-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Systemanalyse</subfield><subfield code="0">(DE-588)4116673-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Nichtlineares System</subfield><subfield code="0">(DE-588)4042110-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Linearisierung</subfield><subfield code="0">(DE-588)4199872-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Nichtlineares System</subfield><subfield code="0">(DE-588)4042110-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Ljapunov-Stabilitätstheorie</subfield><subfield code="0">(DE-588)4167992-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Nichtlineares System</subfield><subfield code="0">(DE-588)4042110-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Interdisciplinary Applied Mathematics</subfield><subfield code="v">10</subfield><subfield code="w">(DE-604)BV004216726</subfield><subfield code="9">10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3108-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856838</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421421 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:09Z |
institution | BVB |
isbn | 9781475731088 9781441931320 |
issn | 0939-6047 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856838 |
oclc_num | 864054019 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 DE-739 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 DE-739 |
physical | 1 Online-Ressource (XXVI, 668 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer New York |
record_format | marc |
series | Interdisciplinary Applied Mathematics |
series2 | Interdisciplinary Applied Mathematics |
spelling | Sastry, Shankar 1956- Verfasser (DE-588)121291057 aut Nonlinear Systems Analysis, Stability, and Control by Shankar Sastry New York, NY Springer New York 1999 1 Online-Ressource (XXVI, 668 p) txt rdacontent c rdamedia cr rdacarrier Interdisciplinary Applied Mathematics 10 0939-6047 There has been a great deal of excitement in the last ten years over the emergence of new mathematical techniques for the analysis and control of nonlinear systems: Witness the emergence of a set of simplified tools for the analysis of bifurcations, chaos, and other complicated dynamical behavior and the development of a comprehensive theory of geometric nonlinear control. Coupled with this set of analytic advances has been the vast increase in computational power available for both the simulation and visualization of nonlinear systems as well as for the implementation in real time of sophisticated, real-time nonlinear control laws. Thus, technological advances havebolstered the impact of analytic advances and produced a tremendous variety of new problems and applications that are nonlinear in an essential way. Nonlinear controllaws have been implemented for sophisticated flight control systems on board helicopters, and vertical take offand landing aircraft; adaptive, nonlinearcontrollaws havebeen implementedfor robot manipulators operating either singly, or in cooperation on a multi-fingered robot hand; adaptive control laws have been implemented forjetengines andautomotive fuel injection systems, as well as for automated highway systems and air traffic management systems, to mention a few examples. Bifurcation theory has been used to explain and understand the onset of fiutterin the dynamics of aircraft wing structures, the onset of oscillations in nonlinear circuits, surge and stall in aircraft engines, voltage collapse in a power transmission network Mathematics Mathematical optimization Calculus of Variations and Optimal Control; Optimization Mathematik Ljapunov-Stabilitätstheorie (DE-588)4167992-1 gnd rswk-swf Nichtlineares System (DE-588)4042110-7 gnd rswk-swf Kontrolltheorie (DE-588)4032317-1 gnd rswk-swf Dynamisches Verhalten (DE-588)4140475-0 gnd rswk-swf Verzweigung Mathematik (DE-588)4078889-1 gnd rswk-swf Rückkopplung (DE-588)4050851-1 gnd rswk-swf Systemanalyse (DE-588)4116673-5 gnd rswk-swf Linearisierung (DE-588)4199872-8 gnd rswk-swf Nichtlineares System (DE-588)4042110-7 s Rückkopplung (DE-588)4050851-1 s Kontrolltheorie (DE-588)4032317-1 s 1\p DE-604 Dynamisches Verhalten (DE-588)4140475-0 s Systemanalyse (DE-588)4116673-5 s 2\p DE-604 Linearisierung (DE-588)4199872-8 s 3\p DE-604 Ljapunov-Stabilitätstheorie (DE-588)4167992-1 s 4\p DE-604 Verzweigung Mathematik (DE-588)4078889-1 s 5\p DE-604 Interdisciplinary Applied Mathematics 10 (DE-604)BV004216726 10 https://doi.org/10.1007/978-1-4757-3108-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sastry, Shankar 1956- Nonlinear Systems Analysis, Stability, and Control Interdisciplinary Applied Mathematics Mathematics Mathematical optimization Calculus of Variations and Optimal Control; Optimization Mathematik Ljapunov-Stabilitätstheorie (DE-588)4167992-1 gnd Nichtlineares System (DE-588)4042110-7 gnd Kontrolltheorie (DE-588)4032317-1 gnd Dynamisches Verhalten (DE-588)4140475-0 gnd Verzweigung Mathematik (DE-588)4078889-1 gnd Rückkopplung (DE-588)4050851-1 gnd Systemanalyse (DE-588)4116673-5 gnd Linearisierung (DE-588)4199872-8 gnd |
subject_GND | (DE-588)4167992-1 (DE-588)4042110-7 (DE-588)4032317-1 (DE-588)4140475-0 (DE-588)4078889-1 (DE-588)4050851-1 (DE-588)4116673-5 (DE-588)4199872-8 |
title | Nonlinear Systems Analysis, Stability, and Control |
title_auth | Nonlinear Systems Analysis, Stability, and Control |
title_exact_search | Nonlinear Systems Analysis, Stability, and Control |
title_full | Nonlinear Systems Analysis, Stability, and Control by Shankar Sastry |
title_fullStr | Nonlinear Systems Analysis, Stability, and Control by Shankar Sastry |
title_full_unstemmed | Nonlinear Systems Analysis, Stability, and Control by Shankar Sastry |
title_short | Nonlinear Systems |
title_sort | nonlinear systems analysis stability and control |
title_sub | Analysis, Stability, and Control |
topic | Mathematics Mathematical optimization Calculus of Variations and Optimal Control; Optimization Mathematik Ljapunov-Stabilitätstheorie (DE-588)4167992-1 gnd Nichtlineares System (DE-588)4042110-7 gnd Kontrolltheorie (DE-588)4032317-1 gnd Dynamisches Verhalten (DE-588)4140475-0 gnd Verzweigung Mathematik (DE-588)4078889-1 gnd Rückkopplung (DE-588)4050851-1 gnd Systemanalyse (DE-588)4116673-5 gnd Linearisierung (DE-588)4199872-8 gnd |
topic_facet | Mathematics Mathematical optimization Calculus of Variations and Optimal Control; Optimization Mathematik Ljapunov-Stabilitätstheorie Nichtlineares System Kontrolltheorie Dynamisches Verhalten Verzweigung Mathematik Rückkopplung Systemanalyse Linearisierung |
url | https://doi.org/10.1007/978-1-4757-3108-8 |
volume_link | (DE-604)BV004216726 |
work_keys_str_mv | AT sastryshankar nonlinearsystemsanalysisstabilityandcontrol |