The Nature of Statistical Learning Theory:
Saved in:
Bibliographic Details
Main Author: Vapnik, Vladimir N. (Author)
Format: Electronic eBook
Language:English
Published: New York, NY Springer New York 1995
Subjects:
Online Access:Volltext
Item Description:The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning from the general point of view of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. These include: - the general setting of learning problems and the general model of minimizing the risk functional from empirical data - a comprehensive analysis of the empirical risk minimization principle and shows how this allows for the construction of necessary and sufficient conditions for consistency - non-asymptotic bounds for the risk achieved using the empirical risk minimization principle - principles for controlling the generalization ability of learning machines using small sample sizes - introducing a new type of universal learning machine that controls the generalization ability
Physical Description:1 Online-Ressource (XV, 188 p)
ISBN:9781475724400
9781475724424
DOI:10.1007/978-1-4757-2440-0

There is no print copy available.

Interlibrary loan Place Request Caution: Not in THWS collection! Get full text