Sphere Packings, Lattices and Groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1993
|
Ausgabe: | Second Edition |
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics
290 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The second edition of this timely, definitive, and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problems such as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. Like the first edition, the second edition describes the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analog-to-digital conversion and data compression, n-dimensional crystallography, and dual theory and superstring theory in physics. Results as of 1992 have been added to the text, and the extensive bibliography - itself a contribution to the field - is supplemented with approximately 450 new entries |
Beschreibung: | 1 Online-Ressource (XLIII, 682 p) |
ISBN: | 9781475722499 9781475722512 |
ISSN: | 0072-7830 |
DOI: | 10.1007/978-1-4757-2249-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421324 | ||
003 | DE-604 | ||
005 | 20200412 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9781475722499 |c Online |9 978-1-4757-2249-9 | ||
020 | |a 9781475722512 |c Print |9 978-1-4757-2251-2 | ||
024 | 7 | |a 10.1007/978-1-4757-2249-9 |2 doi | |
035 | |a (OCoLC)1165442115 | ||
035 | |a (DE-599)BVBBV042421324 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Conway, John Horton |d 1937-2020 |e Verfasser |0 (DE-588)119529289 |4 aut | |
245 | 1 | 0 | |a Sphere Packings, Lattices and Groups |c by J. H. Conway, N. J. A. Sloane |
250 | |a Second Edition | ||
264 | 1 | |a New York, NY |b Springer New York |c 1993 | |
300 | |a 1 Online-Ressource (XLIII, 682 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |v 290 |x 0072-7830 | |
500 | |a The second edition of this timely, definitive, and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problems such as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. Like the first edition, the second edition describes the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analog-to-digital conversion and data compression, n-dimensional crystallography, and dual theory and superstring theory in physics. Results as of 1992 have been added to the text, and the extensive bibliography - itself a contribution to the field - is supplemented with approximately 450 new entries | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Gittertheorie |0 (DE-588)4157394-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Überdeckung |g Mathematik |0 (DE-588)4186551-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kombinatorik |0 (DE-588)4031824-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Packungsproblem |0 (DE-588)4173057-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gitter |g Mathematik |0 (DE-588)4157375-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quadratische Form |0 (DE-588)4128297-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Klassifikation |0 (DE-588)4030958-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kugelpackung |0 (DE-588)4165929-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kugelpackung |0 (DE-588)4165929-6 |D s |
689 | 0 | 1 | |a Kombinatorik |0 (DE-588)4031824-2 |D s |
689 | 0 | 2 | |a Gittertheorie |0 (DE-588)4157394-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Kugelpackung |0 (DE-588)4165929-6 |D s |
689 | 1 | 1 | |a Packungsproblem |0 (DE-588)4173057-4 |D s |
689 | 1 | 2 | |a Quadratische Form |0 (DE-588)4128297-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Quadratische Form |0 (DE-588)4128297-8 |D s |
689 | 2 | 1 | |a Klassifikation |0 (DE-588)4030958-7 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Gitter |g Mathematik |0 (DE-588)4157375-4 |D s |
689 | 3 | 1 | |a Klassifikation |0 (DE-588)4030958-7 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Gitter |g Mathematik |0 (DE-588)4157375-4 |D s |
689 | 4 | 1 | |a Quadratische Form |0 (DE-588)4128297-8 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
689 | 5 | 0 | |a Gitter |g Mathematik |0 (DE-588)4157375-4 |D s |
689 | 5 | 1 | |a Kugelpackung |0 (DE-588)4165929-6 |D s |
689 | 5 | |8 6\p |5 DE-604 | |
689 | 6 | 0 | |a Überdeckung |g Mathematik |0 (DE-588)4186551-0 |D s |
689 | 6 | |8 7\p |5 DE-604 | |
700 | 1 | |a Sloane, Neil J. A. |d 1939- |e Sonstige |0 (DE-588)121291553 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-2249-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856741 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 7\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094241517568 |
---|---|
any_adam_object | |
author | Conway, John Horton 1937-2020 |
author_GND | (DE-588)119529289 (DE-588)121291553 |
author_facet | Conway, John Horton 1937-2020 |
author_role | aut |
author_sort | Conway, John Horton 1937-2020 |
author_variant | j h c jh jhc |
building | Verbundindex |
bvnumber | BV042421324 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165442115 (DE-599)BVBBV042421324 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-2249-9 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04526nmm a2200877zcb4500</leader><controlfield tag="001">BV042421324</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200412 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475722499</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-2249-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475722512</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4757-2251-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-2249-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165442115</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421324</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Conway, John Horton</subfield><subfield code="d">1937-2020</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119529289</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sphere Packings, Lattices and Groups</subfield><subfield code="c">by J. H. Conway, N. J. A. Sloane</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XLIII, 682 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics</subfield><subfield code="v">290</subfield><subfield code="x">0072-7830</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The second edition of this timely, definitive, and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problems such as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. Like the first edition, the second edition describes the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analog-to-digital conversion and data compression, n-dimensional crystallography, and dual theory and superstring theory in physics. Results as of 1992 have been added to the text, and the extensive bibliography - itself a contribution to the field - is supplemented with approximately 450 new entries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gittertheorie</subfield><subfield code="0">(DE-588)4157394-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Überdeckung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4186551-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Packungsproblem</subfield><subfield code="0">(DE-588)4173057-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gitter</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4157375-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Klassifikation</subfield><subfield code="0">(DE-588)4030958-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kugelpackung</subfield><subfield code="0">(DE-588)4165929-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kugelpackung</subfield><subfield code="0">(DE-588)4165929-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kombinatorik</subfield><subfield code="0">(DE-588)4031824-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Gittertheorie</subfield><subfield code="0">(DE-588)4157394-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kugelpackung</subfield><subfield code="0">(DE-588)4165929-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Packungsproblem</subfield><subfield code="0">(DE-588)4173057-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Klassifikation</subfield><subfield code="0">(DE-588)4030958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Gitter</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4157375-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Klassifikation</subfield><subfield code="0">(DE-588)4030958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Gitter</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4157375-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Gitter</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4157375-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2="1"><subfield code="a">Kugelpackung</subfield><subfield code="0">(DE-588)4165929-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="6" ind2="0"><subfield code="a">Überdeckung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4186551-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sloane, Neil J. A.</subfield><subfield code="d">1939-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)121291553</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-2249-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856741</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421324 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781475722499 9781475722512 |
issn | 0072-7830 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856741 |
oclc_num | 1165442115 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XLIII, 682 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer New York |
record_format | marc |
series2 | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |
spelling | Conway, John Horton 1937-2020 Verfasser (DE-588)119529289 aut Sphere Packings, Lattices and Groups by J. H. Conway, N. J. A. Sloane Second Edition New York, NY Springer New York 1993 1 Online-Ressource (XLIII, 682 p) txt rdacontent c rdamedia cr rdacarrier Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 290 0072-7830 The second edition of this timely, definitive, and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problems such as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. Like the first edition, the second edition describes the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analog-to-digital conversion and data compression, n-dimensional crystallography, and dual theory and superstring theory in physics. Results as of 1992 have been added to the text, and the extensive bibliography - itself a contribution to the field - is supplemented with approximately 450 new entries Mathematics Number theory Number Theory Mathematik Gittertheorie (DE-588)4157394-8 gnd rswk-swf Überdeckung Mathematik (DE-588)4186551-0 gnd rswk-swf Kombinatorik (DE-588)4031824-2 gnd rswk-swf Packungsproblem (DE-588)4173057-4 gnd rswk-swf Gitter Mathematik (DE-588)4157375-4 gnd rswk-swf Quadratische Form (DE-588)4128297-8 gnd rswk-swf Klassifikation (DE-588)4030958-7 gnd rswk-swf Kugelpackung (DE-588)4165929-6 gnd rswk-swf Kugelpackung (DE-588)4165929-6 s Kombinatorik (DE-588)4031824-2 s Gittertheorie (DE-588)4157394-8 s 1\p DE-604 Packungsproblem (DE-588)4173057-4 s Quadratische Form (DE-588)4128297-8 s 2\p DE-604 Klassifikation (DE-588)4030958-7 s 3\p DE-604 Gitter Mathematik (DE-588)4157375-4 s 4\p DE-604 5\p DE-604 6\p DE-604 Überdeckung Mathematik (DE-588)4186551-0 s 7\p DE-604 Sloane, Neil J. A. 1939- Sonstige (DE-588)121291553 oth https://doi.org/10.1007/978-1-4757-2249-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 7\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Conway, John Horton 1937-2020 Sphere Packings, Lattices and Groups Mathematics Number theory Number Theory Mathematik Gittertheorie (DE-588)4157394-8 gnd Überdeckung Mathematik (DE-588)4186551-0 gnd Kombinatorik (DE-588)4031824-2 gnd Packungsproblem (DE-588)4173057-4 gnd Gitter Mathematik (DE-588)4157375-4 gnd Quadratische Form (DE-588)4128297-8 gnd Klassifikation (DE-588)4030958-7 gnd Kugelpackung (DE-588)4165929-6 gnd |
subject_GND | (DE-588)4157394-8 (DE-588)4186551-0 (DE-588)4031824-2 (DE-588)4173057-4 (DE-588)4157375-4 (DE-588)4128297-8 (DE-588)4030958-7 (DE-588)4165929-6 |
title | Sphere Packings, Lattices and Groups |
title_auth | Sphere Packings, Lattices and Groups |
title_exact_search | Sphere Packings, Lattices and Groups |
title_full | Sphere Packings, Lattices and Groups by J. H. Conway, N. J. A. Sloane |
title_fullStr | Sphere Packings, Lattices and Groups by J. H. Conway, N. J. A. Sloane |
title_full_unstemmed | Sphere Packings, Lattices and Groups by J. H. Conway, N. J. A. Sloane |
title_short | Sphere Packings, Lattices and Groups |
title_sort | sphere packings lattices and groups |
topic | Mathematics Number theory Number Theory Mathematik Gittertheorie (DE-588)4157394-8 gnd Überdeckung Mathematik (DE-588)4186551-0 gnd Kombinatorik (DE-588)4031824-2 gnd Packungsproblem (DE-588)4173057-4 gnd Gitter Mathematik (DE-588)4157375-4 gnd Quadratische Form (DE-588)4128297-8 gnd Klassifikation (DE-588)4030958-7 gnd Kugelpackung (DE-588)4165929-6 gnd |
topic_facet | Mathematics Number theory Number Theory Mathematik Gittertheorie Überdeckung Mathematik Kombinatorik Packungsproblem Gitter Mathematik Quadratische Form Klassifikation Kugelpackung |
url | https://doi.org/10.1007/978-1-4757-2249-9 |
work_keys_str_mv | AT conwayjohnhorton spherepackingslatticesandgroups AT sloaneneilja spherepackingslatticesandgroups |