Infinite Dimensional Lie Algebras: An Introduction
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1983
|
Schriftenreihe: | Progress in Mathematics
44 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 Online-Ressource (XVI, 252 p) |
ISBN: | 9781475713824 9781475713848 |
DOI: | 10.1007/978-1-4757-1382-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421260 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1983 |||| o||u| ||||||eng d | ||
020 | |a 9781475713824 |c Online |9 978-1-4757-1382-4 | ||
020 | |a 9781475713848 |c Print |9 978-1-4757-1384-8 | ||
024 | 7 | |a 10.1007/978-1-4757-1382-4 |2 doi | |
035 | |a (OCoLC)864117423 | ||
035 | |a (DE-599)BVBBV042421260 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.55 |2 23 | |
082 | 0 | |a 512.482 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kac, Victor G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Infinite Dimensional Lie Algebras |b An Introduction |c by Victor G. Kac |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1983 | |
300 | |a 1 Online-Ressource (XVI, 252 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 44 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Number theory | |
650 | 4 | |a Topology | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unendlichdimensionale Lie-Algebra |0 (DE-588)4434344-9 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Unendlichdimensionale Lie-Algebra |0 (DE-588)4434344-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-1382-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856677 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094094716928 |
---|---|
any_adam_object | |
author | Kac, Victor G. |
author_facet | Kac, Victor G. |
author_role | aut |
author_sort | Kac, Victor G. |
author_variant | v g k vg vgk |
building | Verbundindex |
bvnumber | BV042421260 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864117423 (DE-599)BVBBV042421260 |
dewey-full | 512.55 512.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 512.482 |
dewey-search | 512.55 512.482 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-1382-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02273nmm a2200637zcb4500</leader><controlfield tag="001">BV042421260</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1983 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475713824</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-1382-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475713848</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4757-1384-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-1382-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864117423</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421260</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kac, Victor G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Infinite Dimensional Lie Algebras</subfield><subfield code="b">An Introduction</subfield><subfield code="c">by Victor G. Kac</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 252 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">44</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unendlichdimensionale Lie-Algebra</subfield><subfield code="0">(DE-588)4434344-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Unendlichdimensionale Lie-Algebra</subfield><subfield code="0">(DE-588)4434344-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-1382-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856677</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV042421260 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781475713824 9781475713848 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856677 |
oclc_num | 864117423 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 252 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Kac, Victor G. Verfasser aut Infinite Dimensional Lie Algebras An Introduction by Victor G. Kac Boston, MA Birkhäuser Boston 1983 1 Online-Ressource (XVI, 252 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 44 Mathematics Topological Groups Combinatorics Global differential geometry Number theory Topology Mathematical physics Topological Groups, Lie Groups Mathematical Methods in Physics Differential Geometry Number Theory Mathematik Mathematische Physik Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Unendlichdimensionale Lie-Algebra (DE-588)4434344-9 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift gnd-content Unendlichdimensionale Lie-Algebra (DE-588)4434344-9 s 2\p DE-604 Lie-Algebra (DE-588)4130355-6 s 3\p DE-604 https://doi.org/10.1007/978-1-4757-1382-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kac, Victor G. Infinite Dimensional Lie Algebras An Introduction Mathematics Topological Groups Combinatorics Global differential geometry Number theory Topology Mathematical physics Topological Groups, Lie Groups Mathematical Methods in Physics Differential Geometry Number Theory Mathematik Mathematische Physik Lie-Algebra (DE-588)4130355-6 gnd Unendlichdimensionale Lie-Algebra (DE-588)4434344-9 gnd |
subject_GND | (DE-588)4130355-6 (DE-588)4434344-9 (DE-588)1071861417 |
title | Infinite Dimensional Lie Algebras An Introduction |
title_auth | Infinite Dimensional Lie Algebras An Introduction |
title_exact_search | Infinite Dimensional Lie Algebras An Introduction |
title_full | Infinite Dimensional Lie Algebras An Introduction by Victor G. Kac |
title_fullStr | Infinite Dimensional Lie Algebras An Introduction by Victor G. Kac |
title_full_unstemmed | Infinite Dimensional Lie Algebras An Introduction by Victor G. Kac |
title_short | Infinite Dimensional Lie Algebras |
title_sort | infinite dimensional lie algebras an introduction |
title_sub | An Introduction |
topic | Mathematics Topological Groups Combinatorics Global differential geometry Number theory Topology Mathematical physics Topological Groups, Lie Groups Mathematical Methods in Physics Differential Geometry Number Theory Mathematik Mathematische Physik Lie-Algebra (DE-588)4130355-6 gnd Unendlichdimensionale Lie-Algebra (DE-588)4434344-9 gnd |
topic_facet | Mathematics Topological Groups Combinatorics Global differential geometry Number theory Topology Mathematical physics Topological Groups, Lie Groups Mathematical Methods in Physics Differential Geometry Number Theory Mathematik Mathematische Physik Lie-Algebra Unendlichdimensionale Lie-Algebra Konferenzschrift |
url | https://doi.org/10.1007/978-1-4757-1382-4 |
work_keys_str_mv | AT kacvictorg infinitedimensionalliealgebrasanintroduction |