A Topological Introduction to Nonlinear Analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1993
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Nonlinear analysis is a remarkable mixture of topology, analysis and applied mathematics. Mathematicians have good reason to become acquainted with this important, rapidly developing subject. But it is a BIG subject. You can feel it: just hold Eberhard Zeidler's Nonlinear Functional Analysis and Its Applications I: Fixed Point Theorems [Z} in your hand. It's heavy, as a 900 page book must be. Yet this is no encyclopedia; the preface accurately describes the " ... very careful selection of material ... " it contains. And what you are holding is only Part I of a five-part work. So how do you get started learning nonlinear analysis? Zeidler's book has a first page, and some people are quite comfortable beginning right there. For an alternative, the bibliography in [Z], which is 42 pages long, contains exposition as well as research results: monographs that explain portions of the subject to a variety of audiences. In particular, [D} covers much of the material of Zeidler's book. What makes this book different? The answer is in three parts: this book is (i) topological (ii) goal-oriented and (iii) a model of its subject |
Beschreibung: | 1 Online-Ressource (IX, 146 p) |
ISBN: | 9781475712094 9780817637064 |
DOI: | 10.1007/978-1-4757-1209-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421258 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9781475712094 |c Online |9 978-1-4757-1209-4 | ||
020 | |a 9780817637064 |c Print |9 978-0-8176-3706-4 | ||
024 | 7 | |a 10.1007/978-1-4757-1209-4 |2 doi | |
035 | |a (OCoLC)864031036 | ||
035 | |a (DE-599)BVBBV042421258 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Brown, Robert F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A Topological Introduction to Nonlinear Analysis |c by Robert F. Brown |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1993 | |
300 | |a 1 Online-Ressource (IX, 146 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Nonlinear analysis is a remarkable mixture of topology, analysis and applied mathematics. Mathematicians have good reason to become acquainted with this important, rapidly developing subject. But it is a BIG subject. You can feel it: just hold Eberhard Zeidler's Nonlinear Functional Analysis and Its Applications I: Fixed Point Theorems [Z} in your hand. It's heavy, as a 900 page book must be. Yet this is no encyclopedia; the preface accurately describes the " ... very careful selection of material ... " it contains. And what you are holding is only Part I of a five-part work. So how do you get started learning nonlinear analysis? Zeidler's book has a first page, and some people are quite comfortable beginning right there. For an alternative, the bibliography in [Z], which is 42 pages long, contains exposition as well as research results: monographs that explain portions of the subject to a variety of audiences. In particular, [D} covers much of the material of Zeidler's book. What makes this book different? The answer is in three parts: this book is (i) topological (ii) goal-oriented and (iii) a model of its subject | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Topology | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Nichtlineare Funktionalanalysis |0 (DE-588)4042093-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Analysis |0 (DE-588)4177490-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Analysis |0 (DE-588)4177490-5 |D s |
689 | 0 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Nichtlineare Funktionalanalysis |0 (DE-588)4042093-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-1209-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856675 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094096814080 |
---|---|
any_adam_object | |
author | Brown, Robert F. |
author_facet | Brown, Robert F. |
author_role | aut |
author_sort | Brown, Robert F. |
author_variant | r f b rf rfb |
building | Verbundindex |
bvnumber | BV042421258 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864031036 (DE-599)BVBBV042421258 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4757-1209-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03199nmm a2200577zc 4500</leader><controlfield tag="001">BV042421258</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475712094</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-1209-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817637064</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-3706-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-1209-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864031036</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421258</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brown, Robert F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Topological Introduction to Nonlinear Analysis</subfield><subfield code="c">by Robert F. Brown</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 146 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Nonlinear analysis is a remarkable mixture of topology, analysis and applied mathematics. Mathematicians have good reason to become acquainted with this important, rapidly developing subject. But it is a BIG subject. You can feel it: just hold Eberhard Zeidler's Nonlinear Functional Analysis and Its Applications I: Fixed Point Theorems [Z} in your hand. It's heavy, as a 900 page book must be. Yet this is no encyclopedia; the preface accurately describes the " ... very careful selection of material ... " it contains. And what you are holding is only Part I of a five-part work. So how do you get started learning nonlinear analysis? Zeidler's book has a first page, and some people are quite comfortable beginning right there. For an alternative, the bibliography in [Z], which is 42 pages long, contains exposition as well as research results: monographs that explain portions of the subject to a variety of audiences. In particular, [D} covers much of the material of Zeidler's book. What makes this book different? The answer is in three parts: this book is (i) topological (ii) goal-oriented and (iii) a model of its subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Funktionalanalysis</subfield><subfield code="0">(DE-588)4042093-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Analysis</subfield><subfield code="0">(DE-588)4177490-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Analysis</subfield><subfield code="0">(DE-588)4177490-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineare Funktionalanalysis</subfield><subfield code="0">(DE-588)4042093-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-1209-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856675</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421258 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781475712094 9780817637064 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856675 |
oclc_num | 864031036 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 146 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Brown, Robert F. Verfasser aut A Topological Introduction to Nonlinear Analysis by Robert F. Brown Boston, MA Birkhäuser Boston 1993 1 Online-Ressource (IX, 146 p) txt rdacontent c rdamedia cr rdacarrier Nonlinear analysis is a remarkable mixture of topology, analysis and applied mathematics. Mathematicians have good reason to become acquainted with this important, rapidly developing subject. But it is a BIG subject. You can feel it: just hold Eberhard Zeidler's Nonlinear Functional Analysis and Its Applications I: Fixed Point Theorems [Z} in your hand. It's heavy, as a 900 page book must be. Yet this is no encyclopedia; the preface accurately describes the " ... very careful selection of material ... " it contains. And what you are holding is only Part I of a five-part work. So how do you get started learning nonlinear analysis? Zeidler's book has a first page, and some people are quite comfortable beginning right there. For an alternative, the bibliography in [Z], which is 42 pages long, contains exposition as well as research results: monographs that explain portions of the subject to a variety of audiences. In particular, [D} covers much of the material of Zeidler's book. What makes this book different? The answer is in three parts: this book is (i) topological (ii) goal-oriented and (iii) a model of its subject Mathematics Functional analysis Differential Equations Differential equations, partial Topology Functional Analysis Ordinary Differential Equations Partial Differential Equations Mathematik Nichtlineare Funktionalanalysis (DE-588)4042093-0 gnd rswk-swf Nichtlineare Analysis (DE-588)4177490-5 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Nichtlineare Analysis (DE-588)4177490-5 s Topologie (DE-588)4060425-1 s 1\p DE-604 Nichtlineare Funktionalanalysis (DE-588)4042093-0 s 2\p DE-604 https://doi.org/10.1007/978-1-4757-1209-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Brown, Robert F. A Topological Introduction to Nonlinear Analysis Mathematics Functional analysis Differential Equations Differential equations, partial Topology Functional Analysis Ordinary Differential Equations Partial Differential Equations Mathematik Nichtlineare Funktionalanalysis (DE-588)4042093-0 gnd Nichtlineare Analysis (DE-588)4177490-5 gnd Topologie (DE-588)4060425-1 gnd |
subject_GND | (DE-588)4042093-0 (DE-588)4177490-5 (DE-588)4060425-1 |
title | A Topological Introduction to Nonlinear Analysis |
title_auth | A Topological Introduction to Nonlinear Analysis |
title_exact_search | A Topological Introduction to Nonlinear Analysis |
title_full | A Topological Introduction to Nonlinear Analysis by Robert F. Brown |
title_fullStr | A Topological Introduction to Nonlinear Analysis by Robert F. Brown |
title_full_unstemmed | A Topological Introduction to Nonlinear Analysis by Robert F. Brown |
title_short | A Topological Introduction to Nonlinear Analysis |
title_sort | a topological introduction to nonlinear analysis |
topic | Mathematics Functional analysis Differential Equations Differential equations, partial Topology Functional Analysis Ordinary Differential Equations Partial Differential Equations Mathematik Nichtlineare Funktionalanalysis (DE-588)4042093-0 gnd Nichtlineare Analysis (DE-588)4177490-5 gnd Topologie (DE-588)4060425-1 gnd |
topic_facet | Mathematics Functional analysis Differential Equations Differential equations, partial Topology Functional Analysis Ordinary Differential Equations Partial Differential Equations Mathematik Nichtlineare Funktionalanalysis Nichtlineare Analysis Topologie |
url | https://doi.org/10.1007/978-1-4757-1209-4 |
work_keys_str_mv | AT brownrobertf atopologicalintroductiontononlinearanalysis |