Differential Topology:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1976
|
Schriftenreihe: | Graduate Texts in Mathematics
33 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book presents some of the basic topological ideas used in studying differentiable manifolds and maps. Mathematical prerequisites have been kept to a minimum; the standard course in analysis and general topology is adequate preparation. An appendix briefly summarizes some of the back ground material. In order to emphasize the geometrical and intuitive aspects of differen tial topology, I have avoided the use of algebraic topology, except in a few isolated places that can easily be skipped. For the same reason I make no use of differential forms or tensors. In my view, advanced algebraic techniques like homology theory are better understood after one has seen several examples of how the raw material of geometry and analysis is distilled down to numerical invariants, such as those developed in this book: the degree of a map, the Euler number of a vector bundle, the genus of a surface, the cobordism class of a manifold, and so forth. With these as motivating examples, the use of homology and homotopy theory in topology should seem quite natural. There are hundreds of exercises, ranging in difficulty from the routine to the unsolved. While these provide examples and further developments of the theory, they are only rarely relied on in the proofs of theorems |
Beschreibung: | 1 Online-Ressource (X, 222 p) |
ISBN: | 9781468494495 9781468494518 |
ISSN: | 0072-5285 |
DOI: | 10.1007/978-1-4684-9449-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042421222 | ||
003 | DE-604 | ||
005 | 20160405 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1976 |||| o||u| ||||||eng d | ||
020 | |a 9781468494495 |c Online |9 978-1-4684-9449-5 | ||
020 | |a 9781468494518 |c Print |9 978-1-4684-9451-8 | ||
024 | 7 | |a 10.1007/978-1-4684-9449-5 |2 doi | |
035 | |a (OCoLC)863865926 | ||
035 | |a (DE-599)BVBBV042421222 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514.34 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Hirsch, Morris W. |d 1933- |e Verfasser |0 (DE-588)172139120 |4 aut | |
245 | 1 | 0 | |a Differential Topology |c by Morris W. Hirsch |
264 | 1 | |a New York, NY |b Springer New York |c 1976 | |
300 | |a 1 Online-Ressource (X, 222 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Graduate Texts in Mathematics |v 33 |x 0072-5285 | |
500 | |a This book presents some of the basic topological ideas used in studying differentiable manifolds and maps. Mathematical prerequisites have been kept to a minimum; the standard course in analysis and general topology is adequate preparation. An appendix briefly summarizes some of the back ground material. In order to emphasize the geometrical and intuitive aspects of differen tial topology, I have avoided the use of algebraic topology, except in a few isolated places that can easily be skipped. For the same reason I make no use of differential forms or tensors. In my view, advanced algebraic techniques like homology theory are better understood after one has seen several examples of how the raw material of geometry and analysis is distilled down to numerical invariants, such as those developed in this book: the degree of a map, the Euler number of a vector bundle, the genus of a surface, the cobordism class of a manifold, and so forth. With these as motivating examples, the use of homology and homotopy theory in topology should seem quite natural. There are hundreds of exercises, ranging in difficulty from the routine to the unsolved. While these provide examples and further developments of the theory, they are only rarely relied on in the proofs of theorems | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Differentialtopologie |0 (DE-588)4012255-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1976 |z Varenna |2 gnd-content | |
689 | 0 | 0 | |a Differentialtopologie |0 (DE-588)4012255-4 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4684-9449-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856639 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153094041239552 |
---|---|
any_adam_object | |
author | Hirsch, Morris W. 1933- |
author_GND | (DE-588)172139120 |
author_facet | Hirsch, Morris W. 1933- |
author_role | aut |
author_sort | Hirsch, Morris W. 1933- |
author_variant | m w h mw mwh |
building | Verbundindex |
bvnumber | BV042421222 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863865926 (DE-599)BVBBV042421222 |
dewey-full | 514.34 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.34 |
dewey-search | 514.34 |
dewey-sort | 3514.34 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4684-9449-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03039nmm a2200481zcb4500</leader><controlfield tag="001">BV042421222</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160405 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1976 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468494495</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4684-9449-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468494518</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4684-9451-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-9449-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863865926</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421222</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.34</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hirsch, Morris W.</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172139120</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential Topology</subfield><subfield code="c">by Morris W. Hirsch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1976</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 222 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">33</subfield><subfield code="x">0072-5285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book presents some of the basic topological ideas used in studying differentiable manifolds and maps. Mathematical prerequisites have been kept to a minimum; the standard course in analysis and general topology is adequate preparation. An appendix briefly summarizes some of the back ground material. In order to emphasize the geometrical and intuitive aspects of differen tial topology, I have avoided the use of algebraic topology, except in a few isolated places that can easily be skipped. For the same reason I make no use of differential forms or tensors. In my view, advanced algebraic techniques like homology theory are better understood after one has seen several examples of how the raw material of geometry and analysis is distilled down to numerical invariants, such as those developed in this book: the degree of a map, the Euler number of a vector bundle, the genus of a surface, the cobordism class of a manifold, and so forth. With these as motivating examples, the use of homology and homotopy theory in topology should seem quite natural. There are hundreds of exercises, ranging in difficulty from the routine to the unsolved. While these provide examples and further developments of the theory, they are only rarely relied on in the proofs of theorems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialtopologie</subfield><subfield code="0">(DE-588)4012255-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1976</subfield><subfield code="z">Varenna</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialtopologie</subfield><subfield code="0">(DE-588)4012255-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-9449-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856639</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 1976 Varenna gnd-content |
genre_facet | Konferenzschrift 1976 Varenna |
id | DE-604.BV042421222 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781468494495 9781468494518 |
issn | 0072-5285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856639 |
oclc_num | 863865926 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 222 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1976 |
publishDateSearch | 1976 |
publishDateSort | 1976 |
publisher | Springer New York |
record_format | marc |
series2 | Graduate Texts in Mathematics |
spelling | Hirsch, Morris W. 1933- Verfasser (DE-588)172139120 aut Differential Topology by Morris W. Hirsch New York, NY Springer New York 1976 1 Online-Ressource (X, 222 p) txt rdacontent c rdamedia cr rdacarrier Graduate Texts in Mathematics 33 0072-5285 This book presents some of the basic topological ideas used in studying differentiable manifolds and maps. Mathematical prerequisites have been kept to a minimum; the standard course in analysis and general topology is adequate preparation. An appendix briefly summarizes some of the back ground material. In order to emphasize the geometrical and intuitive aspects of differen tial topology, I have avoided the use of algebraic topology, except in a few isolated places that can easily be skipped. For the same reason I make no use of differential forms or tensors. In my view, advanced algebraic techniques like homology theory are better understood after one has seen several examples of how the raw material of geometry and analysis is distilled down to numerical invariants, such as those developed in this book: the degree of a map, the Euler number of a vector bundle, the genus of a surface, the cobordism class of a manifold, and so forth. With these as motivating examples, the use of homology and homotopy theory in topology should seem quite natural. There are hundreds of exercises, ranging in difficulty from the routine to the unsolved. While these provide examples and further developments of the theory, they are only rarely relied on in the proofs of theorems Mathematics Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Differentialtopologie (DE-588)4012255-4 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 1976 Varenna gnd-content Differentialtopologie (DE-588)4012255-4 s 2\p DE-604 https://doi.org/10.1007/978-1-4684-9449-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hirsch, Morris W. 1933- Differential Topology Mathematics Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Differentialtopologie (DE-588)4012255-4 gnd |
subject_GND | (DE-588)4012255-4 (DE-588)1071861417 |
title | Differential Topology |
title_auth | Differential Topology |
title_exact_search | Differential Topology |
title_full | Differential Topology by Morris W. Hirsch |
title_fullStr | Differential Topology by Morris W. Hirsch |
title_full_unstemmed | Differential Topology by Morris W. Hirsch |
title_short | Differential Topology |
title_sort | differential topology |
topic | Mathematics Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Differentialtopologie (DE-588)4012255-4 gnd |
topic_facet | Mathematics Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Mathematik Differentialtopologie Konferenzschrift 1976 Varenna |
url | https://doi.org/10.1007/978-1-4684-9449-5 |
work_keys_str_mv | AT hirschmorrisw differentialtopology |