Theory of Finite and Infinite Graphs:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1990
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | To most graph theorists there are two outstanding landmarks in the history of their subject. One is Euler's solution of the Konigsberg Bridges Problem, dated 1736, and the other is the appearance of Denes Konig's textbook in 1936. "From Königsberg to Konig's book" sings the poetess, "So runs the graphic tale . . . " [10]. There were earlier books that took note of graph theory. Veblen's Analysis Situs, published in 1931, is about general combinatorial topology. But its first two chapters, on "Linear graphs" and "Two-Dimensional Complexes", are almost exclusively concerned with the territory still explored by graph theorists. Rouse Ball's Mathematical Recreations and Essays told, usually without proofs, of the major graph-theoretical advances ofthe nineteenth century, of the Five Colour Theorem, of Petersen's Theorem on I-factors, and of Cayley's enumerations of trees. It was Rouse Ball's book that kindled my own graph-theoretical enthusiasm. The graph-theoretical papers of Hassler Whitney, published in 1931-1933, would have made an excellent textbook in English had they been collected and published as such. But the honour of presenting Graph Theory to the mathematical world as a subject in its own right, with its own textbook, belongs to Denes Konig. Low was the prestige of Graph Theory in the Dirty Thirties. It is still remembered, with resentment now shading into amusement, how one mathematician scorned it as "The slums of Topology" |
Beschreibung: | 1 Online-Ressource (426p) |
ISBN: | 9781468489712 9781468489736 |
DOI: | 10.1007/978-1-4684-8971-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421158 | ||
003 | DE-604 | ||
005 | 20171017 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1990 |||| o||u| ||||||eng d | ||
020 | |a 9781468489712 |c Online |9 978-1-4684-8971-2 | ||
020 | |a 9781468489736 |c Print |9 978-1-4684-8973-6 | ||
024 | 7 | |a 10.1007/978-1-4684-8971-2 |2 doi | |
035 | |a (OCoLC)879622285 | ||
035 | |a (DE-599)BVBBV042421158 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.6 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a König, Dénes |d 1884-1944 |e Verfasser |0 (DE-588)118827693 |4 aut | |
245 | 1 | 0 | |a Theory of Finite and Infinite Graphs |c by Dénes König |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1990 | |
300 | |a 1 Online-Ressource (426p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a To most graph theorists there are two outstanding landmarks in the history of their subject. One is Euler's solution of the Konigsberg Bridges Problem, dated 1736, and the other is the appearance of Denes Konig's textbook in 1936. "From Königsberg to Konig's book" sings the poetess, "So runs the graphic tale . . . " [10]. There were earlier books that took note of graph theory. Veblen's Analysis Situs, published in 1931, is about general combinatorial topology. But its first two chapters, on "Linear graphs" and "Two-Dimensional Complexes", are almost exclusively concerned with the territory still explored by graph theorists. Rouse Ball's Mathematical Recreations and Essays told, usually without proofs, of the major graph-theoretical advances ofthe nineteenth century, of the Five Colour Theorem, of Petersen's Theorem on I-factors, and of Cayley's enumerations of trees. It was Rouse Ball's book that kindled my own graph-theoretical enthusiasm. The graph-theoretical papers of Hassler Whitney, published in 1931-1933, would have made an excellent textbook in English had they been collected and published as such. But the honour of presenting Graph Theory to the mathematical world as a subject in its own right, with its own textbook, belongs to Denes Konig. Low was the prestige of Graph Theory in the Dirty Thirties. It is still remembered, with resentment now shading into amusement, how one mathematician scorned it as "The slums of Topology" | ||
648 | 7 | |a Geschichte 1936 |2 gnd |9 rswk-swf | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a History of Mathematical Sciences | |
650 | 4 | |a Mathematical Logic and Foundations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Quelle |0 (DE-588)4135952-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graph |0 (DE-588)4021842-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Theorie |0 (DE-588)4059787-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Endlicher Graph |0 (DE-588)4283258-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | 1 | |a Geschichte 1936 |A z |
689 | 0 | 2 | |a Quelle |0 (DE-588)4135952-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 1 | 1 | |a Geschichte 1936 |A z |
689 | 1 | 2 | |a Quelle |0 (DE-588)4135952-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Endlicher Graph |0 (DE-588)4283258-5 |D s |
689 | 2 | 1 | |a Theorie |0 (DE-588)4059787-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Graph |0 (DE-588)4021842-9 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4684-8971-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856575 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093911216128 |
---|---|
any_adam_object | |
author | König, Dénes 1884-1944 |
author_GND | (DE-588)118827693 |
author_facet | König, Dénes 1884-1944 |
author_role | aut |
author_sort | König, Dénes 1884-1944 |
author_variant | d k dk |
building | Verbundindex |
bvnumber | BV042421158 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879622285 (DE-599)BVBBV042421158 |
dewey-full | 511.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.6 |
dewey-search | 511.6 |
dewey-sort | 3511.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4684-8971-2 |
era | Geschichte 1936 gnd |
era_facet | Geschichte 1936 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04025nmm a2200697zc 4500</leader><controlfield tag="001">BV042421158</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171017 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468489712</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4684-8971-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468489736</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4684-8973-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-8971-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879622285</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421158</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">König, Dénes</subfield><subfield code="d">1884-1944</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118827693</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory of Finite and Infinite Graphs</subfield><subfield code="c">by Dénes König</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (426p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">To most graph theorists there are two outstanding landmarks in the history of their subject. One is Euler's solution of the Konigsberg Bridges Problem, dated 1736, and the other is the appearance of Denes Konig's textbook in 1936. "From Königsberg to Konig's book" sings the poetess, "So runs the graphic tale . . . " [10]. There were earlier books that took note of graph theory. Veblen's Analysis Situs, published in 1931, is about general combinatorial topology. But its first two chapters, on "Linear graphs" and "Two-Dimensional Complexes", are almost exclusively concerned with the territory still explored by graph theorists. Rouse Ball's Mathematical Recreations and Essays told, usually without proofs, of the major graph-theoretical advances ofthe nineteenth century, of the Five Colour Theorem, of Petersen's Theorem on I-factors, and of Cayley's enumerations of trees. It was Rouse Ball's book that kindled my own graph-theoretical enthusiasm. The graph-theoretical papers of Hassler Whitney, published in 1931-1933, would have made an excellent textbook in English had they been collected and published as such. But the honour of presenting Graph Theory to the mathematical world as a subject in its own right, with its own textbook, belongs to Denes Konig. Low was the prestige of Graph Theory in the Dirty Thirties. It is still remembered, with resentment now shading into amusement, how one mathematician scorned it as "The slums of Topology"</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 1936</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">History of Mathematical Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quelle</subfield><subfield code="0">(DE-588)4135952-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graph</subfield><subfield code="0">(DE-588)4021842-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theorie</subfield><subfield code="0">(DE-588)4059787-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endlicher Graph</subfield><subfield code="0">(DE-588)4283258-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte 1936</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Quelle</subfield><subfield code="0">(DE-588)4135952-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Geschichte 1936</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Quelle</subfield><subfield code="0">(DE-588)4135952-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Endlicher Graph</subfield><subfield code="0">(DE-588)4283258-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Theorie</subfield><subfield code="0">(DE-588)4059787-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Graph</subfield><subfield code="0">(DE-588)4021842-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-8971-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856575</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042421158 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781468489712 9781468489736 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856575 |
oclc_num | 879622285 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (426p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | König, Dénes 1884-1944 Verfasser (DE-588)118827693 aut Theory of Finite and Infinite Graphs by Dénes König Boston, MA Birkhäuser Boston 1990 1 Online-Ressource (426p) txt rdacontent c rdamedia cr rdacarrier To most graph theorists there are two outstanding landmarks in the history of their subject. One is Euler's solution of the Konigsberg Bridges Problem, dated 1736, and the other is the appearance of Denes Konig's textbook in 1936. "From Königsberg to Konig's book" sings the poetess, "So runs the graphic tale . . . " [10]. There were earlier books that took note of graph theory. Veblen's Analysis Situs, published in 1931, is about general combinatorial topology. But its first two chapters, on "Linear graphs" and "Two-Dimensional Complexes", are almost exclusively concerned with the territory still explored by graph theorists. Rouse Ball's Mathematical Recreations and Essays told, usually without proofs, of the major graph-theoretical advances ofthe nineteenth century, of the Five Colour Theorem, of Petersen's Theorem on I-factors, and of Cayley's enumerations of trees. It was Rouse Ball's book that kindled my own graph-theoretical enthusiasm. The graph-theoretical papers of Hassler Whitney, published in 1931-1933, would have made an excellent textbook in English had they been collected and published as such. But the honour of presenting Graph Theory to the mathematical world as a subject in its own right, with its own textbook, belongs to Denes Konig. Low was the prestige of Graph Theory in the Dirty Thirties. It is still remembered, with resentment now shading into amusement, how one mathematician scorned it as "The slums of Topology" Geschichte 1936 gnd rswk-swf Mathematics Combinatorics Logic, Symbolic and mathematical History of Mathematical Sciences Mathematical Logic and Foundations Mathematik Quelle (DE-588)4135952-5 gnd rswk-swf Graph (DE-588)4021842-9 gnd rswk-swf Theorie (DE-588)4059787-8 gnd rswk-swf Endlicher Graph (DE-588)4283258-5 gnd rswk-swf Graphentheorie (DE-588)4113782-6 gnd rswk-swf Graphentheorie (DE-588)4113782-6 s Geschichte 1936 z Quelle (DE-588)4135952-5 s 1\p DE-604 2\p DE-604 Endlicher Graph (DE-588)4283258-5 s Theorie (DE-588)4059787-8 s 3\p DE-604 Graph (DE-588)4021842-9 s 4\p DE-604 https://doi.org/10.1007/978-1-4684-8971-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | König, Dénes 1884-1944 Theory of Finite and Infinite Graphs Mathematics Combinatorics Logic, Symbolic and mathematical History of Mathematical Sciences Mathematical Logic and Foundations Mathematik Quelle (DE-588)4135952-5 gnd Graph (DE-588)4021842-9 gnd Theorie (DE-588)4059787-8 gnd Endlicher Graph (DE-588)4283258-5 gnd Graphentheorie (DE-588)4113782-6 gnd |
subject_GND | (DE-588)4135952-5 (DE-588)4021842-9 (DE-588)4059787-8 (DE-588)4283258-5 (DE-588)4113782-6 |
title | Theory of Finite and Infinite Graphs |
title_auth | Theory of Finite and Infinite Graphs |
title_exact_search | Theory of Finite and Infinite Graphs |
title_full | Theory of Finite and Infinite Graphs by Dénes König |
title_fullStr | Theory of Finite and Infinite Graphs by Dénes König |
title_full_unstemmed | Theory of Finite and Infinite Graphs by Dénes König |
title_short | Theory of Finite and Infinite Graphs |
title_sort | theory of finite and infinite graphs |
topic | Mathematics Combinatorics Logic, Symbolic and mathematical History of Mathematical Sciences Mathematical Logic and Foundations Mathematik Quelle (DE-588)4135952-5 gnd Graph (DE-588)4021842-9 gnd Theorie (DE-588)4059787-8 gnd Endlicher Graph (DE-588)4283258-5 gnd Graphentheorie (DE-588)4113782-6 gnd |
topic_facet | Mathematics Combinatorics Logic, Symbolic and mathematical History of Mathematical Sciences Mathematical Logic and Foundations Mathematik Quelle Graph Theorie Endlicher Graph Graphentheorie |
url | https://doi.org/10.1007/978-1-4684-8971-2 |
work_keys_str_mv | AT konigdenes theoryoffiniteandinfinitegraphs |