Applications of Computer Algebra:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1985
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with increasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equation and obtains a closed form analytic answer. It is these Computer Algebra systems, their capabilities, and applications which are the subject of the papers in this volume |
Beschreibung: | 1 Online-Ressource (448p) |
ISBN: | 9781468468885 9781468468908 |
DOI: | 10.1007/978-1-4684-6888-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042421121 | ||
003 | DE-604 | ||
005 | 20171018 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1985 |||| o||u| ||||||eng d | ||
020 | |a 9781468468885 |c Online |9 978-1-4684-6888-5 | ||
020 | |a 9781468468908 |c Print |9 978-1-4684-6890-8 | ||
024 | 7 | |a 10.1007/978-1-4684-6888-5 |2 doi | |
035 | |a (OCoLC)863923917 | ||
035 | |a (DE-599)BVBBV042421121 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 004 |2 23 | |
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a Applications of Computer Algebra |c edited by Richard Pavelle |
264 | 1 | |a Boston, MA |b Springer US |c 1985 | |
300 | |a 1 Online-Ressource (448p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with increasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equation and obtains a closed form analytic answer. It is these Computer Algebra systems, their capabilities, and applications which are the subject of the papers in this volume | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra / Data processing | |
650 | 4 | |a Algebra | |
650 | 4 | |a Computer software | |
650 | 4 | |a Mathematical Software | |
650 | 4 | |a Symbolic and Algebraic Manipulation | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Computeralgebra |0 (DE-588)4010449-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Informatik |0 (DE-588)4026894-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a MACSYMA |0 (DE-588)4168439-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1984 |z Philadelphia Pa. |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Computeralgebra |0 (DE-588)4010449-7 |D s |
689 | 0 | |8 3\p |5 DE-604 | |
689 | 1 | 0 | |a Informatik |0 (DE-588)4026894-9 |D s |
689 | 1 | |8 4\p |5 DE-604 | |
689 | 2 | 0 | |a MACSYMA |0 (DE-588)4168439-4 |D s |
689 | 2 | |8 5\p |5 DE-604 | |
689 | 3 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 3 | |8 6\p |5 DE-604 | |
700 | 1 | |a Pavelle, Richard |4 edt | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4684-6888-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856538 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093846204416 |
---|---|
any_adam_object | |
author2 | Pavelle, Richard |
author2_role | edt |
author2_variant | r p rp |
author_facet | Pavelle, Richard |
building | Verbundindex |
bvnumber | BV042421121 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863923917 (DE-599)BVBBV042421121 |
dewey-full | 004 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004 |
dewey-search | 004 |
dewey-sort | 14 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
doi_str_mv | 10.1007/978-1-4684-6888-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03747nmm a2200685zc 4500</leader><controlfield tag="001">BV042421121</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171018 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468468885</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4684-6888-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781468468908</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4684-6890-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4684-6888-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863923917</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042421121</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applications of Computer Algebra</subfield><subfield code="c">edited by Richard Pavelle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (448p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with increasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equation and obtains a closed form analytic answer. It is these Computer Algebra systems, their capabilities, and applications which are the subject of the papers in this volume</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symbolic and Algebraic Manipulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MACSYMA</subfield><subfield code="0">(DE-588)4168439-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1984</subfield><subfield code="z">Philadelphia Pa.</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">MACSYMA</subfield><subfield code="0">(DE-588)4168439-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pavelle, Richard</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4684-6888-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856538</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 1984 Philadelphia Pa. gnd-content 2\p (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift 1984 Philadelphia Pa. Konferenzschrift |
id | DE-604.BV042421121 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781468468885 9781468468908 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856538 |
oclc_num | 863923917 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (448p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Springer US |
record_format | marc |
spelling | Applications of Computer Algebra edited by Richard Pavelle Boston, MA Springer US 1985 1 Online-Ressource (448p) txt rdacontent c rdamedia cr rdacarrier Today, certain computer software systems exist which surpass the computational ability of researchers when their mathematical techniques are applied to many areas of science and engineering. These computer systems can perform a large portion of the calculations seen in mathematical analysis. Despite this massive power, thousands of people use these systems as a routine resource for everyday calculations. These software programs are commonly called "Computer Algebra" systems. They have names such as MACSYMA, MAPLE, muMATH, REDUCE and SMP. They are receiving credit as a computational aid with increasing regularity in articles in the scientific and engineering literature. When most people think about computers and scientific research these days, they imagine a machine grinding away, processing numbers arithmetically. It is not generally realized that, for a number of years, computers have been performing non-numeric computations. This means, for example, that one inputs an equation and obtains a closed form analytic answer. It is these Computer Algebra systems, their capabilities, and applications which are the subject of the papers in this volume Mathematics Algebra / Data processing Algebra Computer software Mathematical Software Symbolic and Algebraic Manipulation Datenverarbeitung Mathematik Computeralgebra (DE-588)4010449-7 gnd rswk-swf Informatik (DE-588)4026894-9 gnd rswk-swf MACSYMA (DE-588)4168439-4 gnd rswk-swf Algebra (DE-588)4001156-2 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 1984 Philadelphia Pa. gnd-content 2\p (DE-588)1071861417 Konferenzschrift gnd-content Computeralgebra (DE-588)4010449-7 s 3\p DE-604 Informatik (DE-588)4026894-9 s 4\p DE-604 MACSYMA (DE-588)4168439-4 s 5\p DE-604 Algebra (DE-588)4001156-2 s 6\p DE-604 Pavelle, Richard edt https://doi.org/10.1007/978-1-4684-6888-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Applications of Computer Algebra Mathematics Algebra / Data processing Algebra Computer software Mathematical Software Symbolic and Algebraic Manipulation Datenverarbeitung Mathematik Computeralgebra (DE-588)4010449-7 gnd Informatik (DE-588)4026894-9 gnd MACSYMA (DE-588)4168439-4 gnd Algebra (DE-588)4001156-2 gnd |
subject_GND | (DE-588)4010449-7 (DE-588)4026894-9 (DE-588)4168439-4 (DE-588)4001156-2 (DE-588)1071861417 |
title | Applications of Computer Algebra |
title_auth | Applications of Computer Algebra |
title_exact_search | Applications of Computer Algebra |
title_full | Applications of Computer Algebra edited by Richard Pavelle |
title_fullStr | Applications of Computer Algebra edited by Richard Pavelle |
title_full_unstemmed | Applications of Computer Algebra edited by Richard Pavelle |
title_short | Applications of Computer Algebra |
title_sort | applications of computer algebra |
topic | Mathematics Algebra / Data processing Algebra Computer software Mathematical Software Symbolic and Algebraic Manipulation Datenverarbeitung Mathematik Computeralgebra (DE-588)4010449-7 gnd Informatik (DE-588)4026894-9 gnd MACSYMA (DE-588)4168439-4 gnd Algebra (DE-588)4001156-2 gnd |
topic_facet | Mathematics Algebra / Data processing Algebra Computer software Mathematical Software Symbolic and Algebraic Manipulation Datenverarbeitung Mathematik Computeralgebra Informatik MACSYMA Konferenzschrift 1984 Philadelphia Pa. Konferenzschrift |
url | https://doi.org/10.1007/978-1-4684-6888-5 |
work_keys_str_mv | AT pavellerichard applicationsofcomputeralgebra |