Branching Processes:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1983
|
Schriftenreihe: | Progress in Probability and Statistics
3 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Branching processes form one of the classical fields of applied probability and are still an active area of research. The field has by now grown so large and diverse that a complete and unified treatment is hardly possible anymore, let alone in one volume. So, our aim here has been to single out some of the more recent developments and to present them with sufficient background material to obtain a largely self-contained treatment intended to supplement previous monographs rather than to overlap them. The body of the text is divided into four parts, each of its own flavor. Part A is a short introduction, stressing examples and applications. In Part B we give a self-contained and up-to-date presentation of the classical limit theory of simple branching processes, viz. the Galton-Watson (Bienayme-G-W) process and its continuous time analogue. Part C deals with the limit theory of Markov branching processes with a general set of types under conditions tailored to (multigroup) branching diffusions on bounded domains, a setting which also covers the ordinary multitype case. Whereas the point of view in Parts A and B is quite pedagogical, the aim of Part C is to treat a large subfield to the highest degree of generality and completeness possible. Thus the exposition there is at times quite technical |
Beschreibung: | 1 Online-Ressource (X, 461 p) |
ISBN: | 9781461581550 9780817631222 |
DOI: | 10.1007/978-1-4615-8155-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420957 | ||
003 | DE-604 | ||
005 | 20171009 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1983 |||| o||u| ||||||eng d | ||
020 | |a 9781461581550 |c Online |9 978-1-4615-8155-0 | ||
020 | |a 9780817631222 |c Print |9 978-0-8176-3122-2 | ||
024 | 7 | |a 10.1007/978-1-4615-8155-0 |2 doi | |
035 | |a (OCoLC)864092038 | ||
035 | |a (DE-599)BVBBV042420957 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Asmussen, Søren |d 1946- |e Verfasser |0 (DE-588)170289907 |4 aut | |
245 | 1 | 0 | |a Branching Processes |c by Søren Asmussen, Heinrich Hering |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1983 | |
300 | |a 1 Online-Ressource (X, 461 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in Probability and Statistics |v 3 | |
500 | |a Branching processes form one of the classical fields of applied probability and are still an active area of research. The field has by now grown so large and diverse that a complete and unified treatment is hardly possible anymore, let alone in one volume. So, our aim here has been to single out some of the more recent developments and to present them with sufficient background material to obtain a largely self-contained treatment intended to supplement previous monographs rather than to overlap them. The body of the text is divided into four parts, each of its own flavor. Part A is a short introduction, stressing examples and applications. In Part B we give a self-contained and up-to-date presentation of the classical limit theory of simple branching processes, viz. the Galton-Watson (Bienayme-G-W) process and its continuous time analogue. Part C deals with the limit theory of Markov branching processes with a general set of types under conditions tailored to (multigroup) branching diffusions on bounded domains, a setting which also covers the ordinary multitype case. Whereas the point of view in Parts A and B is quite pedagogical, the aim of Part C is to treat a large subfield to the highest degree of generality and completeness possible. Thus the exposition there is at times quite technical | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Verzweigungsprozess |0 (DE-588)4188184-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Verzweigungsprozess |0 (DE-588)4188184-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Hering, H. |d 1940- |e Sonstige |0 (DE-588)1072239914 |4 oth | |
830 | 0 | |a Progress in Probability and Statistics |v 3 |w (DE-604)BV000010596 |9 3 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-8155-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856374 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153093494931456 |
---|---|
any_adam_object | |
author | Asmussen, Søren 1946- |
author_GND | (DE-588)170289907 (DE-588)1072239914 |
author_facet | Asmussen, Søren 1946- |
author_role | aut |
author_sort | Asmussen, Søren 1946- |
author_variant | s a sa |
building | Verbundindex |
bvnumber | BV042420957 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864092038 (DE-599)BVBBV042420957 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4615-8155-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03051nmm a2200481zcb4500</leader><controlfield tag="001">BV042420957</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171009 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1983 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461581550</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4615-8155-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817631222</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-3122-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-8155-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864092038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420957</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Asmussen, Søren</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)170289907</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Branching Processes</subfield><subfield code="c">by Søren Asmussen, Heinrich Hering</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 461 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Probability and Statistics</subfield><subfield code="v">3</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Branching processes form one of the classical fields of applied probability and are still an active area of research. The field has by now grown so large and diverse that a complete and unified treatment is hardly possible anymore, let alone in one volume. So, our aim here has been to single out some of the more recent developments and to present them with sufficient background material to obtain a largely self-contained treatment intended to supplement previous monographs rather than to overlap them. The body of the text is divided into four parts, each of its own flavor. Part A is a short introduction, stressing examples and applications. In Part B we give a self-contained and up-to-date presentation of the classical limit theory of simple branching processes, viz. the Galton-Watson (Bienayme-G-W) process and its continuous time analogue. Part C deals with the limit theory of Markov branching processes with a general set of types under conditions tailored to (multigroup) branching diffusions on bounded domains, a setting which also covers the ordinary multitype case. Whereas the point of view in Parts A and B is quite pedagogical, the aim of Part C is to treat a large subfield to the highest degree of generality and completeness possible. Thus the exposition there is at times quite technical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verzweigungsprozess</subfield><subfield code="0">(DE-588)4188184-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verzweigungsprozess</subfield><subfield code="0">(DE-588)4188184-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hering, H.</subfield><subfield code="d">1940-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1072239914</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Probability and Statistics</subfield><subfield code="v">3</subfield><subfield code="w">(DE-604)BV000010596</subfield><subfield code="9">3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-8155-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856374</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420957 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:08Z |
institution | BVB |
isbn | 9781461581550 9780817631222 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856374 |
oclc_num | 864092038 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 461 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Birkhäuser Boston |
record_format | marc |
series | Progress in Probability and Statistics |
series2 | Progress in Probability and Statistics |
spelling | Asmussen, Søren 1946- Verfasser (DE-588)170289907 aut Branching Processes by Søren Asmussen, Heinrich Hering Boston, MA Birkhäuser Boston 1983 1 Online-Ressource (X, 461 p) txt rdacontent c rdamedia cr rdacarrier Progress in Probability and Statistics 3 Branching processes form one of the classical fields of applied probability and are still an active area of research. The field has by now grown so large and diverse that a complete and unified treatment is hardly possible anymore, let alone in one volume. So, our aim here has been to single out some of the more recent developments and to present them with sufficient background material to obtain a largely self-contained treatment intended to supplement previous monographs rather than to overlap them. The body of the text is divided into four parts, each of its own flavor. Part A is a short introduction, stressing examples and applications. In Part B we give a self-contained and up-to-date presentation of the classical limit theory of simple branching processes, viz. the Galton-Watson (Bienayme-G-W) process and its continuous time analogue. Part C deals with the limit theory of Markov branching processes with a general set of types under conditions tailored to (multigroup) branching diffusions on bounded domains, a setting which also covers the ordinary multitype case. Whereas the point of view in Parts A and B is quite pedagogical, the aim of Part C is to treat a large subfield to the highest degree of generality and completeness possible. Thus the exposition there is at times quite technical Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Verzweigungsprozess (DE-588)4188184-9 gnd rswk-swf Verzweigungsprozess (DE-588)4188184-9 s 1\p DE-604 Hering, H. 1940- Sonstige (DE-588)1072239914 oth Progress in Probability and Statistics 3 (DE-604)BV000010596 3 https://doi.org/10.1007/978-1-4615-8155-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Asmussen, Søren 1946- Branching Processes Progress in Probability and Statistics Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Verzweigungsprozess (DE-588)4188184-9 gnd |
subject_GND | (DE-588)4188184-9 |
title | Branching Processes |
title_auth | Branching Processes |
title_exact_search | Branching Processes |
title_full | Branching Processes by Søren Asmussen, Heinrich Hering |
title_fullStr | Branching Processes by Søren Asmussen, Heinrich Hering |
title_full_unstemmed | Branching Processes by Søren Asmussen, Heinrich Hering |
title_short | Branching Processes |
title_sort | branching processes |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Verzweigungsprozess (DE-588)4188184-9 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Verzweigungsprozess |
url | https://doi.org/10.1007/978-1-4615-8155-0 |
volume_link | (DE-604)BV000010596 |
work_keys_str_mv | AT asmussensøren branchingprocesses AT heringh branchingprocesses |