Natural Function Algebras:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1979
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The term "function algebra" usually refers to a uniformly closed algebra of complex valued continuous functions on a compact Hausdorff space. Such Banach algebras, which are also called "uniform algebras", have been much studied during the past 15 or 20 years. Since the most important examples of uniform algebras consist of, or are built up from, analytic functions, it is not surprising that most of the work has been dominated by questions of analyticity in one form or another. In fact, the study of these special algebras and their generalizations accounts for the bulk of the research on function algebras. We are concerned here, however, with another facet of the subject based on the observation that very general algebras of continuous functions tend to exhibit certain properties that are strongly reminiscent of analyticity. Although there exist a variety of well-known properties of this kind that could be mentioned, in many ways the most striking is a local maximum modulus principle proved in 1960 by Hugo Rossi [RI]. This result, one of the deepest and most elegant in the theory of function algebras, is an essential tool in the theory as we have developed it here. It holds for an arbitrary Banaeh algebra of functions defined on the spectrum (maximal ideal space) of the algebra. These are the algebras, along with appropriate generalizations to algebras defined on noncompact spaces, that we call "natural function algebras" |
Beschreibung: | 1 Online-Ressource (XIV, 240 p.) 1 illus |
ISBN: | 9781461380702 9780387904498 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-1-4613-8070-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042420657 | ||
003 | DE-604 | ||
005 | 20171212 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1979 |||| o||u| ||||||eng d | ||
020 | |a 9781461380702 |c Online |9 978-1-4613-8070-2 | ||
020 | |a 9780387904498 |c Print |9 978-0-387-90449-8 | ||
024 | 7 | |a 10.1007/978-1-4613-8070-2 |2 doi | |
035 | |a (OCoLC)863807342 | ||
035 | |a (DE-599)BVBBV042420657 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Rickart, Charles E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Natural Function Algebras |c by Charles E. Rickart |
264 | 1 | |a New York, NY |b Springer New York |c 1979 | |
300 | |a 1 Online-Ressource (XIV, 240 p.) |b 1 illus | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a The term "function algebra" usually refers to a uniformly closed algebra of complex valued continuous functions on a compact Hausdorff space. Such Banach algebras, which are also called "uniform algebras", have been much studied during the past 15 or 20 years. Since the most important examples of uniform algebras consist of, or are built up from, analytic functions, it is not surprising that most of the work has been dominated by questions of analyticity in one form or another. In fact, the study of these special algebras and their generalizations accounts for the bulk of the research on function algebras. We are concerned here, however, with another facet of the subject based on the observation that very general algebras of continuous functions tend to exhibit certain properties that are strongly reminiscent of analyticity. Although there exist a variety of well-known properties of this kind that could be mentioned, in many ways the most striking is a local maximum modulus principle proved in 1960 by Hugo Rossi [RI]. This result, one of the deepest and most elegant in the theory of function algebras, is an essential tool in the theory as we have developed it here. It holds for an arbitrary Banaeh algebra of functions defined on the spectrum (maximal ideal space) of the algebra. These are the algebras, along with appropriate generalizations to algebras defined on noncompact spaces, that we call "natural function algebras" | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Banach-Algebra |0 (DE-588)4193187-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionenalgebra |0 (DE-588)4155686-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Banach-Algebra |0 (DE-588)4193187-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Funktionenalgebra |0 (DE-588)4155686-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-8070-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856074 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092820697088 |
---|---|
any_adam_object | |
author | Rickart, Charles E. |
author_facet | Rickart, Charles E. |
author_role | aut |
author_sort | Rickart, Charles E. |
author_variant | c e r ce cer |
building | Verbundindex |
bvnumber | BV042420657 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863807342 (DE-599)BVBBV042420657 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4613-8070-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03148nmm a2200493zc 4500</leader><controlfield tag="001">BV042420657</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171212 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1979 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461380702</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-8070-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387904498</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-90449-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-8070-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863807342</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420657</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rickart, Charles E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Natural Function Algebras</subfield><subfield code="c">by Charles E. Rickart</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1979</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 240 p.)</subfield><subfield code="b">1 illus</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The term "function algebra" usually refers to a uniformly closed algebra of complex valued continuous functions on a compact Hausdorff space. Such Banach algebras, which are also called "uniform algebras", have been much studied during the past 15 or 20 years. Since the most important examples of uniform algebras consist of, or are built up from, analytic functions, it is not surprising that most of the work has been dominated by questions of analyticity in one form or another. In fact, the study of these special algebras and their generalizations accounts for the bulk of the research on function algebras. We are concerned here, however, with another facet of the subject based on the observation that very general algebras of continuous functions tend to exhibit certain properties that are strongly reminiscent of analyticity. Although there exist a variety of well-known properties of this kind that could be mentioned, in many ways the most striking is a local maximum modulus principle proved in 1960 by Hugo Rossi [RI]. This result, one of the deepest and most elegant in the theory of function algebras, is an essential tool in the theory as we have developed it here. It holds for an arbitrary Banaeh algebra of functions defined on the spectrum (maximal ideal space) of the algebra. These are the algebras, along with appropriate generalizations to algebras defined on noncompact spaces, that we call "natural function algebras"</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Algebra</subfield><subfield code="0">(DE-588)4193187-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionenalgebra</subfield><subfield code="0">(DE-588)4155686-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Banach-Algebra</subfield><subfield code="0">(DE-588)4193187-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Funktionenalgebra</subfield><subfield code="0">(DE-588)4155686-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-8070-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856074</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420657 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461380702 9780387904498 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856074 |
oclc_num | 863807342 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 240 p.) 1 illus |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1979 |
publishDateSearch | 1979 |
publishDateSort | 1979 |
publisher | Springer New York |
record_format | marc |
series2 | Universitext |
spelling | Rickart, Charles E. Verfasser aut Natural Function Algebras by Charles E. Rickart New York, NY Springer New York 1979 1 Online-Ressource (XIV, 240 p.) 1 illus txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 The term "function algebra" usually refers to a uniformly closed algebra of complex valued continuous functions on a compact Hausdorff space. Such Banach algebras, which are also called "uniform algebras", have been much studied during the past 15 or 20 years. Since the most important examples of uniform algebras consist of, or are built up from, analytic functions, it is not surprising that most of the work has been dominated by questions of analyticity in one form or another. In fact, the study of these special algebras and their generalizations accounts for the bulk of the research on function algebras. We are concerned here, however, with another facet of the subject based on the observation that very general algebras of continuous functions tend to exhibit certain properties that are strongly reminiscent of analyticity. Although there exist a variety of well-known properties of this kind that could be mentioned, in many ways the most striking is a local maximum modulus principle proved in 1960 by Hugo Rossi [RI]. This result, one of the deepest and most elegant in the theory of function algebras, is an essential tool in the theory as we have developed it here. It holds for an arbitrary Banaeh algebra of functions defined on the spectrum (maximal ideal space) of the algebra. These are the algebras, along with appropriate generalizations to algebras defined on noncompact spaces, that we call "natural function algebras" Mathematics Mathematics, general Mathematik Banach-Algebra (DE-588)4193187-7 gnd rswk-swf Funktionenalgebra (DE-588)4155686-0 gnd rswk-swf Banach-Algebra (DE-588)4193187-7 s 1\p DE-604 Funktionenalgebra (DE-588)4155686-0 s 2\p DE-604 https://doi.org/10.1007/978-1-4613-8070-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rickart, Charles E. Natural Function Algebras Mathematics Mathematics, general Mathematik Banach-Algebra (DE-588)4193187-7 gnd Funktionenalgebra (DE-588)4155686-0 gnd |
subject_GND | (DE-588)4193187-7 (DE-588)4155686-0 |
title | Natural Function Algebras |
title_auth | Natural Function Algebras |
title_exact_search | Natural Function Algebras |
title_full | Natural Function Algebras by Charles E. Rickart |
title_fullStr | Natural Function Algebras by Charles E. Rickart |
title_full_unstemmed | Natural Function Algebras by Charles E. Rickart |
title_short | Natural Function Algebras |
title_sort | natural function algebras |
topic | Mathematics Mathematics, general Mathematik Banach-Algebra (DE-588)4193187-7 gnd Funktionenalgebra (DE-588)4155686-0 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Banach-Algebra Funktionenalgebra |
url | https://doi.org/10.1007/978-1-4613-8070-2 |
work_keys_str_mv | AT rickartcharlese naturalfunctionalgebras |