Minimax and Applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1995
|
Schriftenreihe: | Nonconvex Optimization and Its Applications
4 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Techniques and principles of minimax theory play a key role in many areas of research, including game theory, optimization, and computational complexity. In general, a minimax problem can be formulated as min max f(x, y) (1) ",EX !lEY where f(x, y) is a function defined on the product of X and Y spaces. There are two basic issues regarding minimax problems: The first issue concerns the establishment of sufficient and necessary conditions for equality minmaxf(x,y) = maxminf(x,y). (2) "'EX !lEY !lEY "'EX The classical minimax theorem of von Neumann is a result of this type. Duality theory in linear and convex quadratic programming interprets minimax theory in a different way. The second issue concerns the establishment of sufficient and necessary conditions for values of the variables x and y that achieve the global minimax function value f(x*, y*) = minmaxf(x, y). (3) "'EX !lEY There are two developments in minimax theory that we would like to mention |
Beschreibung: | 1 Online-Ressource (XIV, 296 p) |
ISBN: | 9781461335573 9781461335597 |
ISSN: | 1571-568X |
DOI: | 10.1007/978-1-4613-3557-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420642 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9781461335573 |c Online |9 978-1-4613-3557-3 | ||
020 | |a 9781461335597 |c Print |9 978-1-4613-3559-7 | ||
024 | 7 | |a 10.1007/978-1-4613-3557-3 |2 doi | |
035 | |a (OCoLC)1184275922 | ||
035 | |a (DE-599)BVBBV042420642 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518.1 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Du, Ding-Zhu |e Verfasser |4 aut | |
245 | 1 | 0 | |a Minimax and Applications |c edited by Ding-Zhu Du, Panos M. Pardalos |
264 | 1 | |a Boston, MA |b Springer US |c 1995 | |
300 | |a 1 Online-Ressource (XIV, 296 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Nonconvex Optimization and Its Applications |v 4 |x 1571-568X | |
500 | |a Techniques and principles of minimax theory play a key role in many areas of research, including game theory, optimization, and computational complexity. In general, a minimax problem can be formulated as min max f(x, y) (1) ",EX !lEY where f(x, y) is a function defined on the product of X and Y spaces. There are two basic issues regarding minimax problems: The first issue concerns the establishment of sufficient and necessary conditions for equality minmaxf(x,y) = maxminf(x,y). (2) "'EX !lEY !lEY "'EX The classical minimax theorem of von Neumann is a result of this type. Duality theory in linear and convex quadratic programming interprets minimax theory in a different way. The second issue concerns the establishment of sufficient and necessary conditions for values of the variables x and y that achieve the global minimax function value f(x*, y*) = minmaxf(x, y). (3) "'EX !lEY There are two developments in minimax theory that we would like to mention | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computational complexity | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Discrete Mathematics in Computer Science | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Minimum-Maximum-Prinzip |0 (DE-588)4170060-0 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Minimum-Maximum-Prinzip |0 (DE-588)4170060-0 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Pardalos, Panos M. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-3557-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027856059 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092786094080 |
---|---|
any_adam_object | |
author | Du, Ding-Zhu |
author_facet | Du, Ding-Zhu |
author_role | aut |
author_sort | Du, Ding-Zhu |
author_variant | d z d dzd |
building | Verbundindex |
bvnumber | BV042420642 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184275922 (DE-599)BVBBV042420642 |
dewey-full | 518.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518.1 |
dewey-search | 518.1 |
dewey-sort | 3518.1 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4613-3557-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02909nmm a2200541zcb4500</leader><controlfield tag="001">BV042420642</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461335573</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-3557-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461335597</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-3559-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-3557-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184275922</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420642</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Du, Ding-Zhu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Minimax and Applications</subfield><subfield code="c">edited by Ding-Zhu Du, Panos M. Pardalos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 296 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Nonconvex Optimization and Its Applications</subfield><subfield code="v">4</subfield><subfield code="x">1571-568X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Techniques and principles of minimax theory play a key role in many areas of research, including game theory, optimization, and computational complexity. In general, a minimax problem can be formulated as min max f(x, y) (1) ",EX !lEY where f(x, y) is a function defined on the product of X and Y spaces. There are two basic issues regarding minimax problems: The first issue concerns the establishment of sufficient and necessary conditions for equality minmaxf(x,y) = maxminf(x,y). (2) "'EX !lEY !lEY "'EX The classical minimax theorem of von Neumann is a result of this type. Duality theory in linear and convex quadratic programming interprets minimax theory in a different way. The second issue concerns the establishment of sufficient and necessary conditions for values of the variables x and y that achieve the global minimax function value f(x*, y*) = minmaxf(x, y). (3) "'EX !lEY There are two developments in minimax theory that we would like to mention</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete Mathematics in Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Minimum-Maximum-Prinzip</subfield><subfield code="0">(DE-588)4170060-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Minimum-Maximum-Prinzip</subfield><subfield code="0">(DE-588)4170060-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pardalos, Panos M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-3557-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027856059</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042420642 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461335573 9781461335597 |
issn | 1571-568X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027856059 |
oclc_num | 1184275922 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 296 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer US |
record_format | marc |
series2 | Nonconvex Optimization and Its Applications |
spelling | Du, Ding-Zhu Verfasser aut Minimax and Applications edited by Ding-Zhu Du, Panos M. Pardalos Boston, MA Springer US 1995 1 Online-Ressource (XIV, 296 p) txt rdacontent c rdamedia cr rdacarrier Nonconvex Optimization and Its Applications 4 1571-568X Techniques and principles of minimax theory play a key role in many areas of research, including game theory, optimization, and computational complexity. In general, a minimax problem can be formulated as min max f(x, y) (1) ",EX !lEY where f(x, y) is a function defined on the product of X and Y spaces. There are two basic issues regarding minimax problems: The first issue concerns the establishment of sufficient and necessary conditions for equality minmaxf(x,y) = maxminf(x,y). (2) "'EX !lEY !lEY "'EX The classical minimax theorem of von Neumann is a result of this type. Duality theory in linear and convex quadratic programming interprets minimax theory in a different way. The second issue concerns the establishment of sufficient and necessary conditions for values of the variables x and y that achieve the global minimax function value f(x*, y*) = minmaxf(x, y). (3) "'EX !lEY There are two developments in minimax theory that we would like to mention Mathematics Computational complexity Computer science / Mathematics Algorithms Discrete Mathematics in Computer Science Computational Mathematics and Numerical Analysis Informatik Mathematik Minimum-Maximum-Prinzip (DE-588)4170060-0 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Minimum-Maximum-Prinzip (DE-588)4170060-0 s 2\p DE-604 Pardalos, Panos M. Sonstige oth https://doi.org/10.1007/978-1-4613-3557-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Du, Ding-Zhu Minimax and Applications Mathematics Computational complexity Computer science / Mathematics Algorithms Discrete Mathematics in Computer Science Computational Mathematics and Numerical Analysis Informatik Mathematik Minimum-Maximum-Prinzip (DE-588)4170060-0 gnd |
subject_GND | (DE-588)4170060-0 (DE-588)4143413-4 |
title | Minimax and Applications |
title_auth | Minimax and Applications |
title_exact_search | Minimax and Applications |
title_full | Minimax and Applications edited by Ding-Zhu Du, Panos M. Pardalos |
title_fullStr | Minimax and Applications edited by Ding-Zhu Du, Panos M. Pardalos |
title_full_unstemmed | Minimax and Applications edited by Ding-Zhu Du, Panos M. Pardalos |
title_short | Minimax and Applications |
title_sort | minimax and applications |
topic | Mathematics Computational complexity Computer science / Mathematics Algorithms Discrete Mathematics in Computer Science Computational Mathematics and Numerical Analysis Informatik Mathematik Minimum-Maximum-Prinzip (DE-588)4170060-0 gnd |
topic_facet | Mathematics Computational complexity Computer science / Mathematics Algorithms Discrete Mathematics in Computer Science Computational Mathematics and Numerical Analysis Informatik Mathematik Minimum-Maximum-Prinzip Aufsatzsammlung |
url | https://doi.org/10.1007/978-1-4613-3557-3 |
work_keys_str_mv | AT dudingzhu minimaxandapplications AT pardalospanosm minimaxandapplications |