Proceedings of the Second ISAAC Congress: Volume 2: This project has been executed with Grant No. 11–56 from the Commemorative Association for the Japan World Exposition (1970)
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Begehr, Heinrich G. W. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston, MA Springer US 2000
Schriftenreihe:International Society for Analysis, Applications and Computation 8
Schlagworte:
Online-Zugang:Volltext
Beschreibung:Let 8 be a Riemann surface of analytically finite type (9, n) with 29 ­ 2+n> O. Take two pointsP1, P2 E 8, and set 8 ,1>2= 8 \ {P1' P2}. Let PI Homeo+(8;P1,P2) be the group of all orientation preserving homeomor­ phismsw: 8 -+ 8 fixingP1, P2 and isotopic to the identity on 8. Denote byHomeot(8;Pb P2) the set of all elements ofHomeo+(8;P1, P2) iso­ topic to the identity on 8 ,P2' ThenHomeot(8;P1,P2) is a normal sub­ pl group ofHomeo+(8;P1,P2). We setIsot(8;P1,P2) =Homeo+(8;P1,P2)/ Homeot(8;p1, P2). The purpose of this note is to announce a result on the Nielsen­ Thurston-Bers type classification of an element [w] ofIsot+(8;P1,P2). We give a necessary and sufficient condition for thetypeto be hyperbolic. The condition is described in terms of properties of the pure braid [b ] w induced by [w]. Proofs will appear elsewhere. The problem considered in this note and the form ofthe solution are suggested by Kra's beautiful theorem in [6], where he treats self-maps of Riemann surfaces with one specified point. 2 TheclassificationduetoBers Let us recall the classification of elements of the mapping class group due to Bers (see Bers [1]). LetT(R) be the Teichmiiller space of a Riemann surfaceR, andMod(R) be the Teichmtiller modular group of R. Note that an orientation preserving homeomorphism w: R -+ R induces canonically an element (w) EMod(R). Denote by&.r(R)(·,.) the Teichmiiller distance onT(R). For an elementXEMod(R), we define a(x)= inf &.r(R)(r,x(r))
Beschreibung:1 Online-Ressource (XIV, 821 p)
ISBN:9781461302711
9781461379713
ISSN:1388-4271
DOI:10.1007/978-1-4613-0271-1

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen