Computational Aspects of Linear Control:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2002
|
Schriftenreihe: | Numerical Methods and Algorithms
1 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Many devices (we say dynamical systems or simply systems) behave like black boxes: they receive an input, this input is transformed following some laws (usually a differential equation) and an output is observed. The problem is to regulate the input in order to control the output, that is for obtaining a desired output. Such a mechanism, where the input is modified according to the output measured, is called feedback. The study and design of such automatic processes is called control theory. As we will see, the term system embraces any device and control theory has a wide variety of applications in the real world. Control theory is an interdisciplinary domain at the junction of differential and difference equations, system theory and statistics. Moreover, the solution of a control problem involves many topics of numerical analysis and leads to many interesting computational problems: linear algebra (QR, SVD, projections, Schur complement, structured matrices, localization of eigenvalues, computation of the rank, Jordan normal form, Sylvester and other equations, systems of linear equations, regularization, etc), root localization for polynomials, inversion of the Laplace transform, computation of the matrix exponential, approximation theory (orthogonal polynomials, Pad6 approximation, continued fractions and linear fractional transformations), optimization, least squares, dynamic programming, etc. So, control theory is also a good excuse for presenting various (sometimes unrelated) issues of numerical analysis and the procedures for their solution. This book is not a book on control |
Beschreibung: | 1 Online-Ressource (X, 295 p) |
ISBN: | 9781461302612 9781402007118 |
ISSN: | 1571-5698 |
DOI: | 10.1007/978-1-4613-0261-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420581 | ||
003 | DE-604 | ||
005 | 20170918 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9781461302612 |c Online |9 978-1-4613-0261-2 | ||
020 | |a 9781402007118 |c Print |9 978-1-4020-0711-8 | ||
024 | 7 | |a 10.1007/978-1-4613-0261-2 |2 doi | |
035 | |a (OCoLC)1184415718 | ||
035 | |a (DE-599)BVBBV042420581 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Brezinski, Claude |d 1941- |e Verfasser |0 (DE-588)108764737 |4 aut | |
245 | 1 | 0 | |a Computational Aspects of Linear Control |c edited by Claude Brezinski |
264 | 1 | |a Boston, MA |b Springer US |c 2002 | |
300 | |a 1 Online-Ressource (X, 295 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Numerical Methods and Algorithms |v 1 |x 1571-5698 | |
500 | |a Many devices (we say dynamical systems or simply systems) behave like black boxes: they receive an input, this input is transformed following some laws (usually a differential equation) and an output is observed. The problem is to regulate the input in order to control the output, that is for obtaining a desired output. Such a mechanism, where the input is modified according to the output measured, is called feedback. The study and design of such automatic processes is called control theory. As we will see, the term system embraces any device and control theory has a wide variety of applications in the real world. Control theory is an interdisciplinary domain at the junction of differential and difference equations, system theory and statistics. Moreover, the solution of a control problem involves many topics of numerical analysis and leads to many interesting computational problems: linear algebra (QR, SVD, projections, Schur complement, structured matrices, localization of eigenvalues, computation of the rank, Jordan normal form, Sylvester and other equations, systems of linear equations, regularization, etc), root localization for polynomials, inversion of the Laplace transform, computation of the matrix exponential, approximation theory (orthogonal polynomials, Pad6 approximation, continued fractions and linear fractional transformations), optimization, least squares, dynamic programming, etc. So, control theory is also a good excuse for presenting various (sometimes unrelated) issues of numerical analysis and the procedures for their solution. This book is not a book on control | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Approximations and Expansions | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare Kontrolltheorie |0 (DE-588)4123657-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare Kontrolltheorie |0 (DE-588)4123657-9 |D s |
689 | 0 | 1 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Numerical Methods and Algorithms |v 1 |w (DE-604)BV016934978 |9 1 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4613-0261-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855998 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092644536320 |
---|---|
any_adam_object | |
author | Brezinski, Claude 1941- |
author_GND | (DE-588)108764737 |
author_facet | Brezinski, Claude 1941- |
author_role | aut |
author_sort | Brezinski, Claude 1941- |
author_variant | c b cb |
building | Verbundindex |
bvnumber | BV042420581 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184415718 (DE-599)BVBBV042420581 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4613-0261-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03610nmm a2200541zcb4500</leader><controlfield tag="001">BV042420581</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170918 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461302612</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4613-0261-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402007118</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4020-0711-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4613-0261-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184415718</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420581</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brezinski, Claude</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108764737</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational Aspects of Linear Control</subfield><subfield code="c">edited by Claude Brezinski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 295 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Numerical Methods and Algorithms</subfield><subfield code="v">1</subfield><subfield code="x">1571-5698</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Many devices (we say dynamical systems or simply systems) behave like black boxes: they receive an input, this input is transformed following some laws (usually a differential equation) and an output is observed. The problem is to regulate the input in order to control the output, that is for obtaining a desired output. Such a mechanism, where the input is modified according to the output measured, is called feedback. The study and design of such automatic processes is called control theory. As we will see, the term system embraces any device and control theory has a wide variety of applications in the real world. Control theory is an interdisciplinary domain at the junction of differential and difference equations, system theory and statistics. Moreover, the solution of a control problem involves many topics of numerical analysis and leads to many interesting computational problems: linear algebra (QR, SVD, projections, Schur complement, structured matrices, localization of eigenvalues, computation of the rank, Jordan normal form, Sylvester and other equations, systems of linear equations, regularization, etc), root localization for polynomials, inversion of the Laplace transform, computation of the matrix exponential, approximation theory (orthogonal polynomials, Pad6 approximation, continued fractions and linear fractional transformations), optimization, least squares, dynamic programming, etc. So, control theory is also a good excuse for presenting various (sometimes unrelated) issues of numerical analysis and the procedures for their solution. This book is not a book on control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximations and Expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Kontrolltheorie</subfield><subfield code="0">(DE-588)4123657-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Kontrolltheorie</subfield><subfield code="0">(DE-588)4123657-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Numerical Methods and Algorithms</subfield><subfield code="v">1</subfield><subfield code="w">(DE-604)BV016934978</subfield><subfield code="9">1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4613-0261-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855998</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420581 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:07Z |
institution | BVB |
isbn | 9781461302612 9781402007118 |
issn | 1571-5698 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855998 |
oclc_num | 1184415718 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 295 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer US |
record_format | marc |
series | Numerical Methods and Algorithms |
series2 | Numerical Methods and Algorithms |
spelling | Brezinski, Claude 1941- Verfasser (DE-588)108764737 aut Computational Aspects of Linear Control edited by Claude Brezinski Boston, MA Springer US 2002 1 Online-Ressource (X, 295 p) txt rdacontent c rdamedia cr rdacarrier Numerical Methods and Algorithms 1 1571-5698 Many devices (we say dynamical systems or simply systems) behave like black boxes: they receive an input, this input is transformed following some laws (usually a differential equation) and an output is observed. The problem is to regulate the input in order to control the output, that is for obtaining a desired output. Such a mechanism, where the input is modified according to the output measured, is called feedback. The study and design of such automatic processes is called control theory. As we will see, the term system embraces any device and control theory has a wide variety of applications in the real world. Control theory is an interdisciplinary domain at the junction of differential and difference equations, system theory and statistics. Moreover, the solution of a control problem involves many topics of numerical analysis and leads to many interesting computational problems: linear algebra (QR, SVD, projections, Schur complement, structured matrices, localization of eigenvalues, computation of the rank, Jordan normal form, Sylvester and other equations, systems of linear equations, regularization, etc), root localization for polynomials, inversion of the Laplace transform, computation of the matrix exponential, approximation theory (orthogonal polynomials, Pad6 approximation, continued fractions and linear fractional transformations), optimization, least squares, dynamic programming, etc. So, control theory is also a good excuse for presenting various (sometimes unrelated) issues of numerical analysis and the procedures for their solution. This book is not a book on control Mathematics Computer science / Mathematics Mathematical optimization Computational Mathematics and Numerical Analysis Calculus of Variations and Optimal Control; Optimization Approximations and Expansions Informatik Mathematik Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Lineare Kontrolltheorie (DE-588)4123657-9 gnd rswk-swf Lineare Kontrolltheorie (DE-588)4123657-9 s Numerische Mathematik (DE-588)4042805-9 s 1\p DE-604 Numerical Methods and Algorithms 1 (DE-604)BV016934978 1 https://doi.org/10.1007/978-1-4613-0261-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Brezinski, Claude 1941- Computational Aspects of Linear Control Numerical Methods and Algorithms Mathematics Computer science / Mathematics Mathematical optimization Computational Mathematics and Numerical Analysis Calculus of Variations and Optimal Control; Optimization Approximations and Expansions Informatik Mathematik Numerische Mathematik (DE-588)4042805-9 gnd Lineare Kontrolltheorie (DE-588)4123657-9 gnd |
subject_GND | (DE-588)4042805-9 (DE-588)4123657-9 |
title | Computational Aspects of Linear Control |
title_auth | Computational Aspects of Linear Control |
title_exact_search | Computational Aspects of Linear Control |
title_full | Computational Aspects of Linear Control edited by Claude Brezinski |
title_fullStr | Computational Aspects of Linear Control edited by Claude Brezinski |
title_full_unstemmed | Computational Aspects of Linear Control edited by Claude Brezinski |
title_short | Computational Aspects of Linear Control |
title_sort | computational aspects of linear control |
topic | Mathematics Computer science / Mathematics Mathematical optimization Computational Mathematics and Numerical Analysis Calculus of Variations and Optimal Control; Optimization Approximations and Expansions Informatik Mathematik Numerische Mathematik (DE-588)4042805-9 gnd Lineare Kontrolltheorie (DE-588)4123657-9 gnd |
topic_facet | Mathematics Computer science / Mathematics Mathematical optimization Computational Mathematics and Numerical Analysis Calculus of Variations and Optimal Control; Optimization Approximations and Expansions Informatik Mathematik Numerische Mathematik Lineare Kontrolltheorie |
url | https://doi.org/10.1007/978-1-4613-0261-2 |
volume_link | (DE-604)BV016934978 |
work_keys_str_mv | AT brezinskiclaude computationalaspectsoflinearcontrol |