Nonlinear Analysis on Manifolds. Monge-Ampère Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1982
|
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics
252 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This volume is intended to allow mathematicians and physicists, especially analysts, to learn about nonlinear problems which arise in Riemannian Geometry. Analysis on Riemannian manifolds is a field currently undergoing great development. More and more, analysis proves to be a very powerful means for solving geometrical problems. Conversely, geometry may help us to solve certain problems in analysis. There are several reasons why the topic is difficult and interesting. It is very large and almost unexplored. On the other hand, geometric problems often lead to limiting cases of known problems in analysis, sometimes there is even more than one approach, and the already existing theoretical studies are inadequate to solve them. Each problem has its own particular difficulties. Nevertheless there exist some standard methods which are useful and which we must know to apply them. One should not forget that our problems are motivated by geometry, and that a geometrical argument may simplify the problem under investigation. Examples of this kind are still too rare. This work is neither a systematic study of a mathematical field nor the presentation of a lot of theoretical knowledge. On the contrary, I do my best to limit the text to the essential knowledge. I define as few concepts as possible and give only basic theorems which are useful for our topic. But I hope that the reader will find this sufficient to solve other geometrical problems by analysis |
Beschreibung: | 1 Online-Ressource (XII, 204 p) |
ISBN: | 9781461257349 9781461257363 |
ISSN: | 0072-7830 |
DOI: | 10.1007/978-1-4612-5734-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420420 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1982 |||| o||u| ||||||eng d | ||
020 | |a 9781461257349 |c Online |9 978-1-4612-5734-9 | ||
020 | |a 9781461257363 |c Print |9 978-1-4612-5736-3 | ||
024 | 7 | |a 10.1007/978-1-4612-5734-9 |2 doi | |
035 | |a (OCoLC)863781668 | ||
035 | |a (DE-599)BVBBV042420420 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Aubin, Thierry |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nonlinear Analysis on Manifolds. Monge-Ampère Equations |c by Thierry Aubin |
264 | 1 | |a New York, NY |b Springer New York |c 1982 | |
300 | |a 1 Online-Ressource (XII, 204 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |v 252 |x 0072-7830 | |
500 | |a This volume is intended to allow mathematicians and physicists, especially analysts, to learn about nonlinear problems which arise in Riemannian Geometry. Analysis on Riemannian manifolds is a field currently undergoing great development. More and more, analysis proves to be a very powerful means for solving geometrical problems. Conversely, geometry may help us to solve certain problems in analysis. There are several reasons why the topic is difficult and interesting. It is very large and almost unexplored. On the other hand, geometric problems often lead to limiting cases of known problems in analysis, sometimes there is even more than one approach, and the already existing theoretical studies are inadequate to solve them. Each problem has its own particular difficulties. Nevertheless there exist some standard methods which are useful and which we must know to apply them. One should not forget that our problems are motivated by geometry, and that a geometrical argument may simplify the problem under investigation. Examples of this kind are still too rare. This work is neither a systematic study of a mathematical field nor the presentation of a lot of theoretical knowledge. On the contrary, I do my best to limit the text to the essential knowledge. I define as few concepts as possible and give only basic theorems which are useful for our topic. But I hope that the reader will find this sufficient to solve other geometrical problems by analysis | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Matrix theory | |
650 | 4 | |a Linear and Multilinear Algebras, Matrix Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Monge-Ampère-Differentialgleichung |0 (DE-588)4253327-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Analysis |0 (DE-588)4177490-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannscher Raum |0 (DE-588)4128295-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannscher Raum |0 (DE-588)4128295-4 |D s |
689 | 0 | 1 | |a Monge-Ampère-Differentialgleichung |0 (DE-588)4253327-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Riemannscher Raum |0 (DE-588)4128295-4 |D s |
689 | 1 | 1 | |a Nichtlineare Analysis |0 (DE-588)4177490-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-5734-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855837 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153092294311936 |
---|---|
any_adam_object | |
author | Aubin, Thierry |
author_facet | Aubin, Thierry |
author_role | aut |
author_sort | Aubin, Thierry |
author_variant | t a ta |
building | Verbundindex |
bvnumber | BV042420420 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863781668 (DE-599)BVBBV042420420 |
dewey-full | 512.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.5 |
dewey-search | 512.5 |
dewey-sort | 3512.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-5734-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03558nmm a2200541zcb4500</leader><controlfield tag="001">BV042420420</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1982 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461257349</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-5734-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461257363</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-5736-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-5734-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863781668</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420420</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aubin, Thierry</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Analysis on Manifolds. Monge-Ampère Equations</subfield><subfield code="c">by Thierry Aubin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 204 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics</subfield><subfield code="v">252</subfield><subfield code="x">0072-7830</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This volume is intended to allow mathematicians and physicists, especially analysts, to learn about nonlinear problems which arise in Riemannian Geometry. Analysis on Riemannian manifolds is a field currently undergoing great development. More and more, analysis proves to be a very powerful means for solving geometrical problems. Conversely, geometry may help us to solve certain problems in analysis. There are several reasons why the topic is difficult and interesting. It is very large and almost unexplored. On the other hand, geometric problems often lead to limiting cases of known problems in analysis, sometimes there is even more than one approach, and the already existing theoretical studies are inadequate to solve them. Each problem has its own particular difficulties. Nevertheless there exist some standard methods which are useful and which we must know to apply them. One should not forget that our problems are motivated by geometry, and that a geometrical argument may simplify the problem under investigation. Examples of this kind are still too rare. This work is neither a systematic study of a mathematical field nor the presentation of a lot of theoretical knowledge. On the contrary, I do my best to limit the text to the essential knowledge. I define as few concepts as possible and give only basic theorems which are useful for our topic. But I hope that the reader will find this sufficient to solve other geometrical problems by analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear and Multilinear Algebras, Matrix Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monge-Ampère-Differentialgleichung</subfield><subfield code="0">(DE-588)4253327-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Analysis</subfield><subfield code="0">(DE-588)4177490-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Monge-Ampère-Differentialgleichung</subfield><subfield code="0">(DE-588)4253327-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Nichtlineare Analysis</subfield><subfield code="0">(DE-588)4177490-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-5734-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855837</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042420420 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461257349 9781461257363 |
issn | 0072-7830 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855837 |
oclc_num | 863781668 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 204 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1982 |
publishDateSearch | 1982 |
publishDateSort | 1982 |
publisher | Springer New York |
record_format | marc |
series2 | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |
spelling | Aubin, Thierry Verfasser aut Nonlinear Analysis on Manifolds. Monge-Ampère Equations by Thierry Aubin New York, NY Springer New York 1982 1 Online-Ressource (XII, 204 p) txt rdacontent c rdamedia cr rdacarrier Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 252 0072-7830 This volume is intended to allow mathematicians and physicists, especially analysts, to learn about nonlinear problems which arise in Riemannian Geometry. Analysis on Riemannian manifolds is a field currently undergoing great development. More and more, analysis proves to be a very powerful means for solving geometrical problems. Conversely, geometry may help us to solve certain problems in analysis. There are several reasons why the topic is difficult and interesting. It is very large and almost unexplored. On the other hand, geometric problems often lead to limiting cases of known problems in analysis, sometimes there is even more than one approach, and the already existing theoretical studies are inadequate to solve them. Each problem has its own particular difficulties. Nevertheless there exist some standard methods which are useful and which we must know to apply them. One should not forget that our problems are motivated by geometry, and that a geometrical argument may simplify the problem under investigation. Examples of this kind are still too rare. This work is neither a systematic study of a mathematical field nor the presentation of a lot of theoretical knowledge. On the contrary, I do my best to limit the text to the essential knowledge. I define as few concepts as possible and give only basic theorems which are useful for our topic. But I hope that the reader will find this sufficient to solve other geometrical problems by analysis Mathematics Matrix theory Linear and Multilinear Algebras, Matrix Theory Mathematik Monge-Ampère-Differentialgleichung (DE-588)4253327-2 gnd rswk-swf Nichtlineare Analysis (DE-588)4177490-5 gnd rswk-swf Riemannscher Raum (DE-588)4128295-4 gnd rswk-swf Riemannscher Raum (DE-588)4128295-4 s Monge-Ampère-Differentialgleichung (DE-588)4253327-2 s 1\p DE-604 Nichtlineare Analysis (DE-588)4177490-5 s 2\p DE-604 https://doi.org/10.1007/978-1-4612-5734-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Aubin, Thierry Nonlinear Analysis on Manifolds. Monge-Ampère Equations Mathematics Matrix theory Linear and Multilinear Algebras, Matrix Theory Mathematik Monge-Ampère-Differentialgleichung (DE-588)4253327-2 gnd Nichtlineare Analysis (DE-588)4177490-5 gnd Riemannscher Raum (DE-588)4128295-4 gnd |
subject_GND | (DE-588)4253327-2 (DE-588)4177490-5 (DE-588)4128295-4 |
title | Nonlinear Analysis on Manifolds. Monge-Ampère Equations |
title_auth | Nonlinear Analysis on Manifolds. Monge-Ampère Equations |
title_exact_search | Nonlinear Analysis on Manifolds. Monge-Ampère Equations |
title_full | Nonlinear Analysis on Manifolds. Monge-Ampère Equations by Thierry Aubin |
title_fullStr | Nonlinear Analysis on Manifolds. Monge-Ampère Equations by Thierry Aubin |
title_full_unstemmed | Nonlinear Analysis on Manifolds. Monge-Ampère Equations by Thierry Aubin |
title_short | Nonlinear Analysis on Manifolds. Monge-Ampère Equations |
title_sort | nonlinear analysis on manifolds monge ampere equations |
topic | Mathematics Matrix theory Linear and Multilinear Algebras, Matrix Theory Mathematik Monge-Ampère-Differentialgleichung (DE-588)4253327-2 gnd Nichtlineare Analysis (DE-588)4177490-5 gnd Riemannscher Raum (DE-588)4128295-4 gnd |
topic_facet | Mathematics Matrix theory Linear and Multilinear Algebras, Matrix Theory Mathematik Monge-Ampère-Differentialgleichung Nichtlineare Analysis Riemannscher Raum |
url | https://doi.org/10.1007/978-1-4612-5734-9 |
work_keys_str_mv | AT aubinthierry nonlinearanalysisonmanifoldsmongeampereequations |