Multiscale Potential Theory: With Applications to Geoscience
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2004
|
Schriftenreihe: | Applied and Numerical Harmonic Analysis
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This self-contained book provides a basic foundation for students, practitioners, and researchers interested in some of the diverse new areas of multiscale (geo)potential theory. New mathematical methods are developed enabling the gravitational potential of a planetary body to be modeled and analyzed using a continuous flow of observations from land or satellite devices. Harmonic wavelet methods are introduced, as well as fast computational schemes and various numerical test examples. The work is divided into two main parts: Part I treats well-posed boundary-value problems of potential theory and elasticity; Part II examines ill-posed problems such as satellite-to-satellite tracking, satellite gravity gradiometry, and gravimetry. Both sections demonstrate how multiresolution representations yield Runge–Walsh type solutions that are both accurate in approximation and tractable in computation. Topic and key features: * Comprehensive coverage of topics which, thus far, are only scattered in journal articles and conference proceedings * Important applications and developments for future satellite scenarios; new modelling techniques involving low-orbiting satellites * Multiscale approaches for numerous geoscientific problems, including geoidal determination, magnetic field reconstruction, deformation analysis, and density variation modelling * Multilevel stabilization procedures for regularization * Treatment of the real Earth’s shape as well as a spherical Earth model * Modern methods of constructive approximation * Exercises at the end of each chapter and an appendix with hints to their solutions Models and methods presented show how various large- and small-scale processes may be addressed by a single geoscientific modelling framework for potential determination. Multiscale Potential Theory may be used as a textbook for graduate-level courses in geomathematics, applied mathematics, and geophysics. The book is also an up-to-date reference text for geoscientists, applied mathematicians, and engineers |
Beschreibung: | 1 Online-Ressource (XVIII, 510p. 127 illus) |
ISBN: | 9781461220480 9781461273950 |
DOI: | 10.1007/978-1-4612-2048-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419970 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781461220480 |c Online |9 978-1-4612-2048-0 | ||
020 | |a 9781461273950 |c Print |9 978-1-4612-7395-0 | ||
024 | 7 | |a 10.1007/978-1-4612-2048-0 |2 doi | |
035 | |a (OCoLC)1184416541 | ||
035 | |a (DE-599)BVBBV042419970 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.96 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Freeden, Willi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Multiscale Potential Theory |b With Applications to Geoscience |c by Willi Freeden, Volker Michel |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2004 | |
300 | |a 1 Online-Ressource (XVIII, 510p. 127 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applied and Numerical Harmonic Analysis | |
500 | |a This self-contained book provides a basic foundation for students, practitioners, and researchers interested in some of the diverse new areas of multiscale (geo)potential theory. New mathematical methods are developed enabling the gravitational potential of a planetary body to be modeled and analyzed using a continuous flow of observations from land or satellite devices. Harmonic wavelet methods are introduced, as well as fast computational schemes and various numerical test examples. The work is divided into two main parts: Part I treats well-posed boundary-value problems of potential theory and elasticity; Part II examines ill-posed problems such as satellite-to-satellite tracking, satellite gravity gradiometry, and gravimetry. Both sections demonstrate how multiresolution representations yield Runge–Walsh type solutions that are both accurate in approximation and tractable in computation. | ||
500 | |a Topic and key features: * Comprehensive coverage of topics which, thus far, are only scattered in journal articles and conference proceedings * Important applications and developments for future satellite scenarios; new modelling techniques involving low-orbiting satellites * Multiscale approaches for numerous geoscientific problems, including geoidal determination, magnetic field reconstruction, deformation analysis, and density variation modelling * Multilevel stabilization procedures for regularization * Treatment of the real Earth’s shape as well as a spherical Earth model * Modern methods of constructive approximation * Exercises at the end of each chapter and an appendix with hints to their solutions Models and methods presented show how various large- and small-scale processes may be addressed by a single geoscientific modelling framework for potential determination. | ||
500 | |a Multiscale Potential Theory may be used as a textbook for graduate-level courses in geomathematics, applied mathematics, and geophysics. The book is also an up-to-date reference text for geoscientists, applied mathematicians, and engineers | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geography | |
650 | 4 | |a Physical geography | |
650 | 4 | |a Fourier analysis | |
650 | 4 | |a Potential theory (Mathematics) | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Potential Theory | |
650 | 4 | |a Fourier Analysis | |
650 | 4 | |a Earth Sciences, general | |
650 | 4 | |a Geophysics/Geodesy | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Geografie | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Geowissenschaften |0 (DE-588)4020288-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Potenzialtheorie |0 (DE-588)4046939-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geowissenschaften |0 (DE-588)4020288-4 |D s |
689 | 0 | 1 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Potenzialtheorie |0 (DE-588)4046939-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Michel, Volker |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-2048-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855387 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091263561728 |
---|---|
any_adam_object | |
author | Freeden, Willi |
author_facet | Freeden, Willi |
author_role | aut |
author_sort | Freeden, Willi |
author_variant | w f wf |
building | Verbundindex |
bvnumber | BV042419970 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184416541 (DE-599)BVBBV042419970 |
dewey-full | 515.96 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.96 |
dewey-search | 515.96 |
dewey-sort | 3515.96 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-2048-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04426nmm a2200685zc 4500</leader><controlfield tag="001">BV042419970</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461220480</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-2048-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461273950</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7395-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-2048-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184416541</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419970</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.96</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Freeden, Willi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiscale Potential Theory</subfield><subfield code="b">With Applications to Geoscience</subfield><subfield code="c">by Willi Freeden, Volker Michel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 510p. 127 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied and Numerical Harmonic Analysis</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This self-contained book provides a basic foundation for students, practitioners, and researchers interested in some of the diverse new areas of multiscale (geo)potential theory. New mathematical methods are developed enabling the gravitational potential of a planetary body to be modeled and analyzed using a continuous flow of observations from land or satellite devices. Harmonic wavelet methods are introduced, as well as fast computational schemes and various numerical test examples. The work is divided into two main parts: Part I treats well-posed boundary-value problems of potential theory and elasticity; Part II examines ill-posed problems such as satellite-to-satellite tracking, satellite gravity gradiometry, and gravimetry. Both sections demonstrate how multiresolution representations yield Runge–Walsh type solutions that are both accurate in approximation and tractable in computation. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Topic and key features: * Comprehensive coverage of topics which, thus far, are only scattered in journal articles and conference proceedings * Important applications and developments for future satellite scenarios; new modelling techniques involving low-orbiting satellites * Multiscale approaches for numerous geoscientific problems, including geoidal determination, magnetic field reconstruction, deformation analysis, and density variation modelling * Multilevel stabilization procedures for regularization * Treatment of the real Earth’s shape as well as a spherical Earth model * Modern methods of constructive approximation * Exercises at the end of each chapter and an appendix with hints to their solutions Models and methods presented show how various large- and small-scale processes may be addressed by a single geoscientific modelling framework for potential determination. </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Multiscale Potential Theory may be used as a textbook for graduate-level courses in geomathematics, applied mathematics, and geophysics. The book is also an up-to-date reference text for geoscientists, applied mathematicians, and engineers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical geography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth Sciences, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geophysics/Geodesy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geografie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geowissenschaften</subfield><subfield code="0">(DE-588)4020288-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geowissenschaften</subfield><subfield code="0">(DE-588)4020288-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Potenzialtheorie</subfield><subfield code="0">(DE-588)4046939-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Michel, Volker</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-2048-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855387</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419970 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461220480 9781461273950 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855387 |
oclc_num | 1184416541 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 510p. 127 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Applied and Numerical Harmonic Analysis |
spelling | Freeden, Willi Verfasser aut Multiscale Potential Theory With Applications to Geoscience by Willi Freeden, Volker Michel Boston, MA Birkhäuser Boston 2004 1 Online-Ressource (XVIII, 510p. 127 illus) txt rdacontent c rdamedia cr rdacarrier Applied and Numerical Harmonic Analysis This self-contained book provides a basic foundation for students, practitioners, and researchers interested in some of the diverse new areas of multiscale (geo)potential theory. New mathematical methods are developed enabling the gravitational potential of a planetary body to be modeled and analyzed using a continuous flow of observations from land or satellite devices. Harmonic wavelet methods are introduced, as well as fast computational schemes and various numerical test examples. The work is divided into two main parts: Part I treats well-posed boundary-value problems of potential theory and elasticity; Part II examines ill-posed problems such as satellite-to-satellite tracking, satellite gravity gradiometry, and gravimetry. Both sections demonstrate how multiresolution representations yield Runge–Walsh type solutions that are both accurate in approximation and tractable in computation. Topic and key features: * Comprehensive coverage of topics which, thus far, are only scattered in journal articles and conference proceedings * Important applications and developments for future satellite scenarios; new modelling techniques involving low-orbiting satellites * Multiscale approaches for numerous geoscientific problems, including geoidal determination, magnetic field reconstruction, deformation analysis, and density variation modelling * Multilevel stabilization procedures for regularization * Treatment of the real Earth’s shape as well as a spherical Earth model * Modern methods of constructive approximation * Exercises at the end of each chapter and an appendix with hints to their solutions Models and methods presented show how various large- and small-scale processes may be addressed by a single geoscientific modelling framework for potential determination. Multiscale Potential Theory may be used as a textbook for graduate-level courses in geomathematics, applied mathematics, and geophysics. The book is also an up-to-date reference text for geoscientists, applied mathematicians, and engineers Mathematics Geography Physical geography Fourier analysis Potential theory (Mathematics) Engineering mathematics Potential Theory Fourier Analysis Earth Sciences, general Geophysics/Geodesy Appl.Mathematics/Computational Methods of Engineering Numerical and Computational Physics Geografie Mathematik Geowissenschaften (DE-588)4020288-4 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Potenzialtheorie (DE-588)4046939-6 gnd rswk-swf Geowissenschaften (DE-588)4020288-4 s Mathematik (DE-588)4037944-9 s 1\p DE-604 Potenzialtheorie (DE-588)4046939-6 s 2\p DE-604 Michel, Volker Sonstige oth https://doi.org/10.1007/978-1-4612-2048-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Freeden, Willi Multiscale Potential Theory With Applications to Geoscience Mathematics Geography Physical geography Fourier analysis Potential theory (Mathematics) Engineering mathematics Potential Theory Fourier Analysis Earth Sciences, general Geophysics/Geodesy Appl.Mathematics/Computational Methods of Engineering Numerical and Computational Physics Geografie Mathematik Geowissenschaften (DE-588)4020288-4 gnd Mathematik (DE-588)4037944-9 gnd Potenzialtheorie (DE-588)4046939-6 gnd |
subject_GND | (DE-588)4020288-4 (DE-588)4037944-9 (DE-588)4046939-6 |
title | Multiscale Potential Theory With Applications to Geoscience |
title_auth | Multiscale Potential Theory With Applications to Geoscience |
title_exact_search | Multiscale Potential Theory With Applications to Geoscience |
title_full | Multiscale Potential Theory With Applications to Geoscience by Willi Freeden, Volker Michel |
title_fullStr | Multiscale Potential Theory With Applications to Geoscience by Willi Freeden, Volker Michel |
title_full_unstemmed | Multiscale Potential Theory With Applications to Geoscience by Willi Freeden, Volker Michel |
title_short | Multiscale Potential Theory |
title_sort | multiscale potential theory with applications to geoscience |
title_sub | With Applications to Geoscience |
topic | Mathematics Geography Physical geography Fourier analysis Potential theory (Mathematics) Engineering mathematics Potential Theory Fourier Analysis Earth Sciences, general Geophysics/Geodesy Appl.Mathematics/Computational Methods of Engineering Numerical and Computational Physics Geografie Mathematik Geowissenschaften (DE-588)4020288-4 gnd Mathematik (DE-588)4037944-9 gnd Potenzialtheorie (DE-588)4046939-6 gnd |
topic_facet | Mathematics Geography Physical geography Fourier analysis Potential theory (Mathematics) Engineering mathematics Potential Theory Fourier Analysis Earth Sciences, general Geophysics/Geodesy Appl.Mathematics/Computational Methods of Engineering Numerical and Computational Physics Geografie Mathematik Geowissenschaften Potenzialtheorie |
url | https://doi.org/10.1007/978-1-4612-2048-0 |
work_keys_str_mv | AT freedenwilli multiscalepotentialtheorywithapplicationstogeoscience AT michelvolker multiscalepotentialtheorywithapplicationstogeoscience |