Clifford Algebras and their Applications in Mathematical Physics: Volume 1: Algebra and Physics
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2000
|
Schriftenreihe: | Progress in Physics
18 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The plausible relativistic physical variables describing a spinning, charged and massive particle are, besides the charge itself, its Minkowski (four) position X, its relativistic linear (four) momentum P and also its so-called Lorentz (four) angular momentum E # 0, the latter forming four translation invariant part of its total angular (four) momentum M. Expressing these variables in terms of Poincare covariant real valued functions defined on an extended relativistic phase space [2, 7J means that the mutual Poisson bracket relations among the total angular momentum functions Mab and the linear momentum functions pa have to represent the commutation relations of the Poincare algebra. On any such an extended relativistic phase space, as shown by Zakrzewski [2, 7], the (natural?) Poisson bracket relations (1. 1) imply that for the splitting of the total angular momentum into its orbital and its spin part (1. 2) one necessarily obtains (1. 3) On the other hand it is always possible to shift (translate) the commuting (see (1. 1)) four position xa by a four vector ~Xa (1. 4) so that the total angular four momentum splits instead into a new orbital and a new (Pauli-Lubanski) spin part (1. 5) in such a way that (1. 6) However, as proved by Zakrzewski [2, 7J, the so-defined new shifted four a position functions X must fulfill the following Poisson bracket relations: (1 |
Beschreibung: | 1 Online-Ressource (XXV, 461 p) |
ISBN: | 9781461213680 9781461271161 |
DOI: | 10.1007/978-1-4612-1368-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419816 | ||
003 | DE-604 | ||
005 | 20170922 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781461213680 |c Online |9 978-1-4612-1368-0 | ||
020 | |a 9781461271161 |c Print |9 978-1-4612-7116-1 | ||
024 | 7 | |a 10.1007/978-1-4612-1368-0 |2 doi | |
035 | |a (OCoLC)863782738 | ||
035 | |a (DE-599)BVBBV042419816 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a Clifford Algebras and their Applications in Mathematical Physics |b Volume 1: Algebra and Physics |c edited by Rafał Abłamowicz, Bertfried Fauser |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2000 | |
300 | |a 1 Online-Ressource (XXV, 461 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in Physics |v 18 | |
500 | |a The plausible relativistic physical variables describing a spinning, charged and massive particle are, besides the charge itself, its Minkowski (four) position X, its relativistic linear (four) momentum P and also its so-called Lorentz (four) angular momentum E # 0, the latter forming four translation invariant part of its total angular (four) momentum M. Expressing these variables in terms of Poincare covariant real valued functions defined on an extended relativistic phase space [2, 7J means that the mutual Poisson bracket relations among the total angular momentum functions Mab and the linear momentum functions pa have to represent the commutation relations of the Poincare algebra. On any such an extended relativistic phase space, as shown by Zakrzewski [2, 7], the (natural?) Poisson bracket relations (1. 1) imply that for the splitting of the total angular momentum into its orbital and its spin part (1. 2) one necessarily obtains (1. 3) On the other hand it is always possible to shift (translate) the commuting (see (1. 1)) four position xa by a four vector ~Xa (1. 4) so that the total angular four momentum splits instead into a new orbital and a new (Pauli-Lubanski) spin part (1. 5) in such a way that (1. 6) However, as proved by Zakrzewski [2, 7J, the so-defined new shifted four a position functions X must fulfill the following Poisson bracket relations: (1 | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
700 | 1 | |a Abłamowicz, Rafał |0 (DE-588)114624917 |4 edt | |
700 | 1 | |a Fauser, Bertfried |4 edt | |
830 | 0 | |a Progress in Physics |v 18 |w (DE-604)BV000002074 |9 18 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1368-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855233 |
Datensatz im Suchindex
_version_ | 1804153090917531648 |
---|---|
any_adam_object | |
author2 | Abłamowicz, Rafał Fauser, Bertfried |
author2_role | edt edt |
author2_variant | r a ra b f bf |
author_GND | (DE-588)114624917 |
author_facet | Abłamowicz, Rafał Fauser, Bertfried |
building | Verbundindex |
bvnumber | BV042419816 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863782738 (DE-599)BVBBV042419816 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-1368-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03052nmm a2200481zcb4500</leader><controlfield tag="001">BV042419816</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170922 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461213680</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1368-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461271161</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7116-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1368-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863782738</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419816</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Clifford Algebras and their Applications in Mathematical Physics</subfield><subfield code="b">Volume 1: Algebra and Physics</subfield><subfield code="c">edited by Rafał Abłamowicz, Bertfried Fauser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXV, 461 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Physics</subfield><subfield code="v">18</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The plausible relativistic physical variables describing a spinning, charged and massive particle are, besides the charge itself, its Minkowski (four) position X, its relativistic linear (four) momentum P and also its so-called Lorentz (four) angular momentum E # 0, the latter forming four translation invariant part of its total angular (four) momentum M. Expressing these variables in terms of Poincare covariant real valued functions defined on an extended relativistic phase space [2, 7J means that the mutual Poisson bracket relations among the total angular momentum functions Mab and the linear momentum functions pa have to represent the commutation relations of the Poincare algebra. On any such an extended relativistic phase space, as shown by Zakrzewski [2, 7], the (natural?) Poisson bracket relations (1. 1) imply that for the splitting of the total angular momentum into its orbital and its spin part (1. 2) one necessarily obtains (1. 3) On the other hand it is always possible to shift (translate) the commuting (see (1. 1)) four position xa by a four vector ~Xa (1. 4) so that the total angular four momentum splits instead into a new orbital and a new (Pauli-Lubanski) spin part (1. 5) in such a way that (1. 6) However, as proved by Zakrzewski [2, 7J, the so-defined new shifted four a position functions X must fulfill the following Poisson bracket relations: (1</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abłamowicz, Rafał</subfield><subfield code="0">(DE-588)114624917</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fauser, Bertfried</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Physics</subfield><subfield code="v">18</subfield><subfield code="w">(DE-604)BV000002074</subfield><subfield code="9">18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1368-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855233</subfield></datafield></record></collection> |
id | DE-604.BV042419816 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461213680 9781461271161 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855233 |
oclc_num | 863782738 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXV, 461 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Birkhäuser Boston |
record_format | marc |
series | Progress in Physics |
series2 | Progress in Physics |
spelling | Clifford Algebras and their Applications in Mathematical Physics Volume 1: Algebra and Physics edited by Rafał Abłamowicz, Bertfried Fauser Boston, MA Birkhäuser Boston 2000 1 Online-Ressource (XXV, 461 p) txt rdacontent c rdamedia cr rdacarrier Progress in Physics 18 The plausible relativistic physical variables describing a spinning, charged and massive particle are, besides the charge itself, its Minkowski (four) position X, its relativistic linear (four) momentum P and also its so-called Lorentz (four) angular momentum E # 0, the latter forming four translation invariant part of its total angular (four) momentum M. Expressing these variables in terms of Poincare covariant real valued functions defined on an extended relativistic phase space [2, 7J means that the mutual Poisson bracket relations among the total angular momentum functions Mab and the linear momentum functions pa have to represent the commutation relations of the Poincare algebra. On any such an extended relativistic phase space, as shown by Zakrzewski [2, 7], the (natural?) Poisson bracket relations (1. 1) imply that for the splitting of the total angular momentum into its orbital and its spin part (1. 2) one necessarily obtains (1. 3) On the other hand it is always possible to shift (translate) the commuting (see (1. 1)) four position xa by a four vector ~Xa (1. 4) so that the total angular four momentum splits instead into a new orbital and a new (Pauli-Lubanski) spin part (1. 5) in such a way that (1. 6) However, as proved by Zakrzewski [2, 7J, the so-defined new shifted four a position functions X must fulfill the following Poisson bracket relations: (1 Mathematics Global differential geometry Mathematical physics Differential Geometry Mathematical Methods in Physics Theoretical, Mathematical and Computational Physics Mathematik Mathematische Physik Abłamowicz, Rafał (DE-588)114624917 edt Fauser, Bertfried edt Progress in Physics 18 (DE-604)BV000002074 18 https://doi.org/10.1007/978-1-4612-1368-0 Verlag Volltext |
spellingShingle | Clifford Algebras and their Applications in Mathematical Physics Volume 1: Algebra and Physics Progress in Physics Mathematics Global differential geometry Mathematical physics Differential Geometry Mathematical Methods in Physics Theoretical, Mathematical and Computational Physics Mathematik Mathematische Physik |
title | Clifford Algebras and their Applications in Mathematical Physics Volume 1: Algebra and Physics |
title_auth | Clifford Algebras and their Applications in Mathematical Physics Volume 1: Algebra and Physics |
title_exact_search | Clifford Algebras and their Applications in Mathematical Physics Volume 1: Algebra and Physics |
title_full | Clifford Algebras and their Applications in Mathematical Physics Volume 1: Algebra and Physics edited by Rafał Abłamowicz, Bertfried Fauser |
title_fullStr | Clifford Algebras and their Applications in Mathematical Physics Volume 1: Algebra and Physics edited by Rafał Abłamowicz, Bertfried Fauser |
title_full_unstemmed | Clifford Algebras and their Applications in Mathematical Physics Volume 1: Algebra and Physics edited by Rafał Abłamowicz, Bertfried Fauser |
title_short | Clifford Algebras and their Applications in Mathematical Physics |
title_sort | clifford algebras and their applications in mathematical physics volume 1 algebra and physics |
title_sub | Volume 1: Algebra and Physics |
topic | Mathematics Global differential geometry Mathematical physics Differential Geometry Mathematical Methods in Physics Theoretical, Mathematical and Computational Physics Mathematik Mathematische Physik |
topic_facet | Mathematics Global differential geometry Mathematical physics Differential Geometry Mathematical Methods in Physics Theoretical, Mathematical and Computational Physics Mathematik Mathematische Physik |
url | https://doi.org/10.1007/978-1-4612-1368-0 |
volume_link | (DE-604)BV000002074 |
work_keys_str_mv | AT abłamowiczrafał cliffordalgebrasandtheirapplicationsinmathematicalphysicsvolume1algebraandphysics AT fauserbertfried cliffordalgebrasandtheirapplicationsinmathematicalphysicsvolume1algebraandphysics |