Nonlinear Singular Perturbation Phenomena: Theory and Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1984
|
Schriftenreihe: | Applied Mathematical Sciences
56 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Our purpose in writing this monograph is twofold. On the one hand, we want to collect in one place many of the recent results on the existence and asymptotic behavior of solutions of certain classes of singularly perturbed nonlinear boundary value problems. On the other, we hope to raise along the way a number of questions for further study, mostly questions we ourselves are unable to answer. The presentation involves a study of both scalar and vector boundary value problems for ordinary differential equations, by means of the consistent use of differential inequality techniques. Our results for scalar boundary value problems obeying some type of maximum principle are fairly complete; however, we have been unable to treat, under any circumstances, problems involving "resonant" behavior. The linear theory for such problems is incredibly complicated already, and at the present time there appears to be little hope for any kind of general nonlinear theory. Our results for vector boundary value problems, even those admitting higher dimensional maximum principles in the form of invariant regions, are also far from complete. We offer them with some trepidation, in the hope that they may stimulate further work in this challenging and important area of differential equations. The research summarized here has been made possible by the support over the years of the National Science Foundation and the National Science and Engineering Research Council |
Beschreibung: | 1 Online-Ressource (VIII, 180p. 12 illus) |
ISBN: | 9781461211143 9780387960661 |
DOI: | 10.1007/978-1-4612-1114-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419751 | ||
003 | DE-604 | ||
005 | 20200707 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1984 |||| o||u| ||||||eng d | ||
020 | |a 9781461211143 |c Online |9 978-1-4612-1114-3 | ||
020 | |a 9780387960661 |c Print |9 978-0-387-96066-1 | ||
024 | 7 | |a 10.1007/978-1-4612-1114-3 |2 doi | |
035 | |a (OCoLC)1184300258 | ||
035 | |a (DE-599)BVBBV042419751 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Chang, K. W. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nonlinear Singular Perturbation Phenomena |b Theory and Applications |c by K. W. Chang, F. A. Howes |
264 | 1 | |a New York, NY |b Springer New York |c 1984 | |
300 | |a 1 Online-Ressource (VIII, 180p. 12 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Applied Mathematical Sciences |v 56 | |
500 | |a Our purpose in writing this monograph is twofold. On the one hand, we want to collect in one place many of the recent results on the existence and asymptotic behavior of solutions of certain classes of singularly perturbed nonlinear boundary value problems. On the other, we hope to raise along the way a number of questions for further study, mostly questions we ourselves are unable to answer. The presentation involves a study of both scalar and vector boundary value problems for ordinary differential equations, by means of the consistent use of differential inequality techniques. Our results for scalar boundary value problems obeying some type of maximum principle are fairly complete; however, we have been unable to treat, under any circumstances, problems involving "resonant" behavior. The linear theory for such problems is incredibly complicated already, and at the present time there appears to be little hope for any kind of general nonlinear theory. Our results for vector boundary value problems, even those admitting higher dimensional maximum principles in the form of invariant regions, are also far from complete. We offer them with some trepidation, in the hope that they may stimulate further work in this challenging and important area of differential equations. The research summarized here has been made possible by the support over the years of the National Science Foundation and the National Science and Engineering Research Council | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Singuläre Störung |0 (DE-588)4055100-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare singuläre Störung |0 (DE-588)4171759-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares Randwertproblem |0 (DE-588)4129830-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Randwertproblem |0 (DE-588)4048395-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare gewöhnliche Differentialgleichung |0 (DE-588)4478411-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 0 | 1 | |a Singuläre Störung |0 (DE-588)4055100-3 |D s |
689 | 0 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Nichtlineares Randwertproblem |0 (DE-588)4129830-5 |D s |
689 | 1 | 1 | |a Singuläre Störung |0 (DE-588)4055100-3 |D s |
689 | 1 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 2 | 1 | |a Nichtlineare gewöhnliche Differentialgleichung |0 (DE-588)4478411-9 |D s |
689 | 2 | 2 | |a Singuläre Störung |0 (DE-588)4055100-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Nichtlineare singuläre Störung |0 (DE-588)4171759-4 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
700 | 1 | |a Howes, F. A. |e Sonstige |4 oth | |
830 | 0 | |a Applied Mathematical Sciences |v 56 |w (DE-604)BV040244599 |9 56 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1114-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855168 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090753953792 |
---|---|
any_adam_object | |
author | Chang, K. W. |
author_facet | Chang, K. W. |
author_role | aut |
author_sort | Chang, K. W. |
author_variant | k w c kw kwc |
building | Verbundindex |
bvnumber | BV042419751 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184300258 (DE-599)BVBBV042419751 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-1114-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04451nmm a2200721zcb4500</leader><controlfield tag="001">BV042419751</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200707 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1984 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461211143</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1114-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387960661</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-96066-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1114-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184300258</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419751</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, K. W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Singular Perturbation Phenomena</subfield><subfield code="b">Theory and Applications</subfield><subfield code="c">by K. W. Chang, F. A. Howes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 180p. 12 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">56</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Our purpose in writing this monograph is twofold. On the one hand, we want to collect in one place many of the recent results on the existence and asymptotic behavior of solutions of certain classes of singularly perturbed nonlinear boundary value problems. On the other, we hope to raise along the way a number of questions for further study, mostly questions we ourselves are unable to answer. The presentation involves a study of both scalar and vector boundary value problems for ordinary differential equations, by means of the consistent use of differential inequality techniques. Our results for scalar boundary value problems obeying some type of maximum principle are fairly complete; however, we have been unable to treat, under any circumstances, problems involving "resonant" behavior. The linear theory for such problems is incredibly complicated already, and at the present time there appears to be little hope for any kind of general nonlinear theory. Our results for vector boundary value problems, even those admitting higher dimensional maximum principles in the form of invariant regions, are also far from complete. We offer them with some trepidation, in the hope that they may stimulate further work in this challenging and important area of differential equations. The research summarized here has been made possible by the support over the years of the National Science Foundation and the National Science and Engineering Research Council</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singuläre Störung</subfield><subfield code="0">(DE-588)4055100-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare singuläre Störung</subfield><subfield code="0">(DE-588)4171759-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares Randwertproblem</subfield><subfield code="0">(DE-588)4129830-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4478411-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Singuläre Störung</subfield><subfield code="0">(DE-588)4055100-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineares Randwertproblem</subfield><subfield code="0">(DE-588)4129830-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Singuläre Störung</subfield><subfield code="0">(DE-588)4055100-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Nichtlineare gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4478411-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Singuläre Störung</subfield><subfield code="0">(DE-588)4055100-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Nichtlineare singuläre Störung</subfield><subfield code="0">(DE-588)4171759-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Howes, F. A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">56</subfield><subfield code="w">(DE-604)BV040244599</subfield><subfield code="9">56</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1114-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855168</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419751 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461211143 9780387960661 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855168 |
oclc_num | 1184300258 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 180p. 12 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Springer New York |
record_format | marc |
series | Applied Mathematical Sciences |
series2 | Applied Mathematical Sciences |
spelling | Chang, K. W. Verfasser aut Nonlinear Singular Perturbation Phenomena Theory and Applications by K. W. Chang, F. A. Howes New York, NY Springer New York 1984 1 Online-Ressource (VIII, 180p. 12 illus) txt rdacontent c rdamedia cr rdacarrier Applied Mathematical Sciences 56 Our purpose in writing this monograph is twofold. On the one hand, we want to collect in one place many of the recent results on the existence and asymptotic behavior of solutions of certain classes of singularly perturbed nonlinear boundary value problems. On the other, we hope to raise along the way a number of questions for further study, mostly questions we ourselves are unable to answer. The presentation involves a study of both scalar and vector boundary value problems for ordinary differential equations, by means of the consistent use of differential inequality techniques. Our results for scalar boundary value problems obeying some type of maximum principle are fairly complete; however, we have been unable to treat, under any circumstances, problems involving "resonant" behavior. The linear theory for such problems is incredibly complicated already, and at the present time there appears to be little hope for any kind of general nonlinear theory. Our results for vector boundary value problems, even those admitting higher dimensional maximum principles in the form of invariant regions, are also far from complete. We offer them with some trepidation, in the hope that they may stimulate further work in this challenging and important area of differential equations. The research summarized here has been made possible by the support over the years of the National Science Foundation and the National Science and Engineering Research Council Mathematics Global analysis (Mathematics) Analysis Mathematik Singuläre Störung (DE-588)4055100-3 gnd rswk-swf Nichtlineare singuläre Störung (DE-588)4171759-4 gnd rswk-swf Nichtlineares Randwertproblem (DE-588)4129830-5 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Randwertproblem (DE-588)4048395-2 gnd rswk-swf Nichtlineare gewöhnliche Differentialgleichung (DE-588)4478411-9 gnd rswk-swf Randwertproblem (DE-588)4048395-2 s Singuläre Störung (DE-588)4055100-3 s Numerisches Verfahren (DE-588)4128130-5 s 1\p DE-604 Nichtlineares Randwertproblem (DE-588)4129830-5 s 2\p DE-604 Nichtlineare gewöhnliche Differentialgleichung (DE-588)4478411-9 s 3\p DE-604 Nichtlineare singuläre Störung (DE-588)4171759-4 s 4\p DE-604 Howes, F. A. Sonstige oth Applied Mathematical Sciences 56 (DE-604)BV040244599 56 https://doi.org/10.1007/978-1-4612-1114-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Chang, K. W. Nonlinear Singular Perturbation Phenomena Theory and Applications Applied Mathematical Sciences Mathematics Global analysis (Mathematics) Analysis Mathematik Singuläre Störung (DE-588)4055100-3 gnd Nichtlineare singuläre Störung (DE-588)4171759-4 gnd Nichtlineares Randwertproblem (DE-588)4129830-5 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Randwertproblem (DE-588)4048395-2 gnd Nichtlineare gewöhnliche Differentialgleichung (DE-588)4478411-9 gnd |
subject_GND | (DE-588)4055100-3 (DE-588)4171759-4 (DE-588)4129830-5 (DE-588)4128130-5 (DE-588)4048395-2 (DE-588)4478411-9 |
title | Nonlinear Singular Perturbation Phenomena Theory and Applications |
title_auth | Nonlinear Singular Perturbation Phenomena Theory and Applications |
title_exact_search | Nonlinear Singular Perturbation Phenomena Theory and Applications |
title_full | Nonlinear Singular Perturbation Phenomena Theory and Applications by K. W. Chang, F. A. Howes |
title_fullStr | Nonlinear Singular Perturbation Phenomena Theory and Applications by K. W. Chang, F. A. Howes |
title_full_unstemmed | Nonlinear Singular Perturbation Phenomena Theory and Applications by K. W. Chang, F. A. Howes |
title_short | Nonlinear Singular Perturbation Phenomena |
title_sort | nonlinear singular perturbation phenomena theory and applications |
title_sub | Theory and Applications |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Singuläre Störung (DE-588)4055100-3 gnd Nichtlineare singuläre Störung (DE-588)4171759-4 gnd Nichtlineares Randwertproblem (DE-588)4129830-5 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Randwertproblem (DE-588)4048395-2 gnd Nichtlineare gewöhnliche Differentialgleichung (DE-588)4478411-9 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Singuläre Störung Nichtlineare singuläre Störung Nichtlineares Randwertproblem Numerisches Verfahren Randwertproblem Nichtlineare gewöhnliche Differentialgleichung |
url | https://doi.org/10.1007/978-1-4612-1114-3 |
volume_link | (DE-604)BV040244599 |
work_keys_str_mv | AT changkw nonlinearsingularperturbationphenomenatheoryandapplications AT howesfa nonlinearsingularperturbationphenomenatheoryandapplications |