The Jackknife and Bootstrap:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1995
|
Schriftenreihe: | Springer Series in Statistics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The jackknife and bootstrap are the most popular data-resampling methods used in statistical analysis. The resampling methods replace theoretical derivations required in applying traditional methods (such as substitution and linearization) in statistical analysis by repeatedly resampling the original data and making inferences from the resamples. Because of the availability of inexpensive and fast computing, these computer-intensive methods have caught on very rapidly in recent years and are particularly appreciated by applied statisticians. The primary aims of this book are (1) to provide a systematic introduction to the theory of the jackknife, the bootstrap, and other resampling methods developed in the last twenty years; (2) to provide a guide for applied statisticians: practitioners often use (or misuse) the resampling methods in situations where no theoretical confirmation has been made; and (3) to stimulate the use of the jackknife and bootstrap and further developments of the resampling methods. The theoretical properties of the jackknife and bootstrap methods are studied in this book in an asymptotic framework. Theorems are illustrated by examples. Finite sample properties of the jackknife and bootstrap are mostly investigated by examples and/or empirical simulation studies. In addition to the theory for the jackknife and bootstrap methods in problems with independent and identically distributed (Li.d.) data, we try to cover, as much as we can, the applications of the jackknife and bootstrap in various complicated non-Li.d. data problems |
Beschreibung: | 1 Online-Ressource (XVII, 517 p) |
ISBN: | 9781461207955 9781461269038 |
ISSN: | 0172-7397 |
DOI: | 10.1007/978-1-4612-0795-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419630 | ||
003 | DE-604 | ||
005 | 20171212 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9781461207955 |c Online |9 978-1-4612-0795-5 | ||
020 | |a 9781461269038 |c Print |9 978-1-4612-6903-8 | ||
024 | 7 | |a 10.1007/978-1-4612-0795-5 |2 doi | |
035 | |a (OCoLC)863734202 | ||
035 | |a (DE-599)BVBBV042419630 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Shao, Jun |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Jackknife and Bootstrap |c by Jun Shao, Dongsheng Tu |
264 | 1 | |a New York, NY |b Springer New York |c 1995 | |
300 | |a 1 Online-Ressource (XVII, 517 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Statistics |x 0172-7397 | |
500 | |a The jackknife and bootstrap are the most popular data-resampling methods used in statistical analysis. The resampling methods replace theoretical derivations required in applying traditional methods (such as substitution and linearization) in statistical analysis by repeatedly resampling the original data and making inferences from the resamples. Because of the availability of inexpensive and fast computing, these computer-intensive methods have caught on very rapidly in recent years and are particularly appreciated by applied statisticians. The primary aims of this book are (1) to provide a systematic introduction to the theory of the jackknife, the bootstrap, and other resampling methods developed in the last twenty years; (2) to provide a guide for applied statisticians: practitioners often use (or misuse) the resampling methods in situations where no theoretical confirmation has been made; and (3) to stimulate the use of the jackknife and bootstrap and further developments of the resampling methods. The theoretical properties of the jackknife and bootstrap methods are studied in this book in an asymptotic framework. Theorems are illustrated by examples. Finite sample properties of the jackknife and bootstrap are mostly investigated by examples and/or empirical simulation studies. In addition to the theory for the jackknife and bootstrap methods in problems with independent and identically distributed (Li.d.) data, we try to cover, as much as we can, the applications of the jackknife and bootstrap in various complicated non-Li.d. data problems | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Bootstrap-Statistik |0 (DE-588)4139168-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Jackknife-Schätzung |0 (DE-588)4385173-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schätztheorie |0 (DE-588)4121608-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bootstrap-Statistik |0 (DE-588)4139168-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Jackknife-Schätzung |0 (DE-588)4385173-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Schätztheorie |0 (DE-588)4121608-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
700 | 1 | |a Tu, Dongsheng |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0795-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855047 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090491809792 |
---|---|
any_adam_object | |
author | Shao, Jun |
author_facet | Shao, Jun |
author_role | aut |
author_sort | Shao, Jun |
author_variant | j s js |
building | Verbundindex |
bvnumber | BV042419630 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863734202 (DE-599)BVBBV042419630 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0795-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03797nmm a2200601zc 4500</leader><controlfield tag="001">BV042419630</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171212 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461207955</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0795-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461269038</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6903-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0795-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863734202</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419630</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shao, Jun</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Jackknife and Bootstrap</subfield><subfield code="c">by Jun Shao, Dongsheng Tu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 517 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Statistics</subfield><subfield code="x">0172-7397</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The jackknife and bootstrap are the most popular data-resampling methods used in statistical analysis. The resampling methods replace theoretical derivations required in applying traditional methods (such as substitution and linearization) in statistical analysis by repeatedly resampling the original data and making inferences from the resamples. Because of the availability of inexpensive and fast computing, these computer-intensive methods have caught on very rapidly in recent years and are particularly appreciated by applied statisticians. The primary aims of this book are (1) to provide a systematic introduction to the theory of the jackknife, the bootstrap, and other resampling methods developed in the last twenty years; (2) to provide a guide for applied statisticians: practitioners often use (or misuse) the resampling methods in situations where no theoretical confirmation has been made; and (3) to stimulate the use of the jackknife and bootstrap and further developments of the resampling methods. The theoretical properties of the jackknife and bootstrap methods are studied in this book in an asymptotic framework. Theorems are illustrated by examples. Finite sample properties of the jackknife and bootstrap are mostly investigated by examples and/or empirical simulation studies. In addition to the theory for the jackknife and bootstrap methods in problems with independent and identically distributed (Li.d.) data, we try to cover, as much as we can, the applications of the jackknife and bootstrap in various complicated non-Li.d. data problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bootstrap-Statistik</subfield><subfield code="0">(DE-588)4139168-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Jackknife-Schätzung</subfield><subfield code="0">(DE-588)4385173-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schätztheorie</subfield><subfield code="0">(DE-588)4121608-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bootstrap-Statistik</subfield><subfield code="0">(DE-588)4139168-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Jackknife-Schätzung</subfield><subfield code="0">(DE-588)4385173-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Schätztheorie</subfield><subfield code="0">(DE-588)4121608-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tu, Dongsheng</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0795-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855047</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419630 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461207955 9781461269038 |
issn | 0172-7397 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855047 |
oclc_num | 863734202 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVII, 517 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Series in Statistics |
spelling | Shao, Jun Verfasser aut The Jackknife and Bootstrap by Jun Shao, Dongsheng Tu New York, NY Springer New York 1995 1 Online-Ressource (XVII, 517 p) txt rdacontent c rdamedia cr rdacarrier Springer Series in Statistics 0172-7397 The jackknife and bootstrap are the most popular data-resampling methods used in statistical analysis. The resampling methods replace theoretical derivations required in applying traditional methods (such as substitution and linearization) in statistical analysis by repeatedly resampling the original data and making inferences from the resamples. Because of the availability of inexpensive and fast computing, these computer-intensive methods have caught on very rapidly in recent years and are particularly appreciated by applied statisticians. The primary aims of this book are (1) to provide a systematic introduction to the theory of the jackknife, the bootstrap, and other resampling methods developed in the last twenty years; (2) to provide a guide for applied statisticians: practitioners often use (or misuse) the resampling methods in situations where no theoretical confirmation has been made; and (3) to stimulate the use of the jackknife and bootstrap and further developments of the resampling methods. The theoretical properties of the jackknife and bootstrap methods are studied in this book in an asymptotic framework. Theorems are illustrated by examples. Finite sample properties of the jackknife and bootstrap are mostly investigated by examples and/or empirical simulation studies. In addition to the theory for the jackknife and bootstrap methods in problems with independent and identically distributed (Li.d.) data, we try to cover, as much as we can, the applications of the jackknife and bootstrap in various complicated non-Li.d. data problems Statistics Statistics, general Statistik Bootstrap-Statistik (DE-588)4139168-8 gnd rswk-swf Jackknife-Schätzung (DE-588)4385173-3 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf Schätztheorie (DE-588)4121608-8 gnd rswk-swf Bootstrap-Statistik (DE-588)4139168-8 s 1\p DE-604 Jackknife-Schätzung (DE-588)4385173-3 s 2\p DE-604 Schätztheorie (DE-588)4121608-8 s 3\p DE-604 Statistik (DE-588)4056995-0 s 4\p DE-604 Tu, Dongsheng Sonstige oth https://doi.org/10.1007/978-1-4612-0795-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Shao, Jun The Jackknife and Bootstrap Statistics Statistics, general Statistik Bootstrap-Statistik (DE-588)4139168-8 gnd Jackknife-Schätzung (DE-588)4385173-3 gnd Statistik (DE-588)4056995-0 gnd Schätztheorie (DE-588)4121608-8 gnd |
subject_GND | (DE-588)4139168-8 (DE-588)4385173-3 (DE-588)4056995-0 (DE-588)4121608-8 |
title | The Jackknife and Bootstrap |
title_auth | The Jackknife and Bootstrap |
title_exact_search | The Jackknife and Bootstrap |
title_full | The Jackknife and Bootstrap by Jun Shao, Dongsheng Tu |
title_fullStr | The Jackknife and Bootstrap by Jun Shao, Dongsheng Tu |
title_full_unstemmed | The Jackknife and Bootstrap by Jun Shao, Dongsheng Tu |
title_short | The Jackknife and Bootstrap |
title_sort | the jackknife and bootstrap |
topic | Statistics Statistics, general Statistik Bootstrap-Statistik (DE-588)4139168-8 gnd Jackknife-Schätzung (DE-588)4385173-3 gnd Statistik (DE-588)4056995-0 gnd Schätztheorie (DE-588)4121608-8 gnd |
topic_facet | Statistics Statistics, general Statistik Bootstrap-Statistik Jackknife-Schätzung Schätztheorie |
url | https://doi.org/10.1007/978-1-4612-0795-5 |
work_keys_str_mv | AT shaojun thejackknifeandbootstrap AT tudongsheng thejackknifeandbootstrap |