Linear Integral Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1997
|
Ausgabe: | Second Edition |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This second edition of Linear Integral Equations continues the emphasis that the first edition placed on applications. Indeed, many more examples have been added throughout the text. Significant new material has been added in Chapters 6 and 8. For instance, in Chapter 8 we have included the solutions of the Cauchy type integral equations on the real line. Also, there is a section on integral equations with a logarithmic kernel. The bibliography at the end of the book has been exteded and brought up to date. I wish to thank Professor B.K. Sachdeva who has checked the revised man uscript and has suggested many improvements. Last but not least, I am grateful to the editor and staff of Birkhauser for inviting me to prepare this new edition and for their support in preparing it for publication. RamP Kanwal CHAYfERl Introduction 1.1. Definition An integral equation is an equation in which an unknown function appears under one or more integral signs Naturally, in such an equation there can occur other terms as well. For example, for a ~ s ~ b; a :( t :( b, the equations (1.1.1) f(s) = ib K(s, t)g(t)dt, g(s) = f(s) + ib K(s, t)g(t)dt, (1.1.2) g(s) = ib K(s, t)[g(t)fdt, (1.1.3) where the function g(s) is the unknown function and all the other functions are known, are integral equations. These functions may be complex-valued functions of the real variables s and t |
Beschreibung: | 1 Online-Ressource (IX, 318 p) |
ISBN: | 9781461207658 9780817639402 |
DOI: | 10.1007/978-1-4612-0765-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419619 | ||
003 | DE-604 | ||
005 | 20180411 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9781461207658 |c Online |9 978-1-4612-0765-8 | ||
020 | |a 9780817639402 |c Print |9 978-0-8176-3940-2 | ||
024 | 7 | |a 10.1007/978-1-4612-0765-8 |2 doi | |
035 | |a (OCoLC)879621550 | ||
035 | |a (DE-599)BVBBV042419619 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.45 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kanwal, Ram P. |d 1924-2006 |e Verfasser |0 (DE-588)1055774505 |4 aut | |
245 | 1 | 0 | |a Linear Integral Equations |c by Ram P. Kanwal |
250 | |a Second Edition | ||
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1997 | |
300 | |a 1 Online-Ressource (IX, 318 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a This second edition of Linear Integral Equations continues the emphasis that the first edition placed on applications. Indeed, many more examples have been added throughout the text. Significant new material has been added in Chapters 6 and 8. For instance, in Chapter 8 we have included the solutions of the Cauchy type integral equations on the real line. Also, there is a section on integral equations with a logarithmic kernel. The bibliography at the end of the book has been exteded and brought up to date. I wish to thank Professor B.K. Sachdeva who has checked the revised man uscript and has suggested many improvements. Last but not least, I am grateful to the editor and staff of Birkhauser for inviting me to prepare this new edition and for their support in preparing it for publication. RamP Kanwal CHAYfERl Introduction 1.1. Definition An integral equation is an equation in which an unknown function appears under one or more integral signs Naturally, in such an equation there can occur other terms as well. For example, for a ~ s ~ b; a :( t :( b, the equations (1.1.1) f(s) = ib K(s, t)g(t)dt, g(s) = f(s) + ib K(s, t)g(t)dt, (1.1.2) g(s) = ib K(s, t)[g(t)fdt, (1.1.3) where the function g(s) is the unknown function and all the other functions are known, are integral equations. These functions may be complex-valued functions of the real variables s and t | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Integral equations | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Integral Equations | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Lineare Integralgleichung |0 (DE-588)4114426-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integralgleichung |0 (DE-588)4027229-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare Integralgleichung |0 (DE-588)4114426-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Integralgleichung |0 (DE-588)4027229-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0765-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855036 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090485518336 |
---|---|
any_adam_object | |
author | Kanwal, Ram P. 1924-2006 |
author_GND | (DE-588)1055774505 |
author_facet | Kanwal, Ram P. 1924-2006 |
author_role | aut |
author_sort | Kanwal, Ram P. 1924-2006 |
author_variant | r p k rp rpk |
building | Verbundindex |
bvnumber | BV042419619 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879621550 (DE-599)BVBBV042419619 |
dewey-full | 515.45 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.45 |
dewey-search | 515.45 |
dewey-sort | 3515.45 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0765-8 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03270nmm a2200541zc 4500</leader><controlfield tag="001">BV042419619</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180411 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461207658</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0765-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817639402</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-3940-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0765-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879621550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419619</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.45</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kanwal, Ram P.</subfield><subfield code="d">1924-2006</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1055774505</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear Integral Equations</subfield><subfield code="c">by Ram P. Kanwal</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 318 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This second edition of Linear Integral Equations continues the emphasis that the first edition placed on applications. Indeed, many more examples have been added throughout the text. Significant new material has been added in Chapters 6 and 8. For instance, in Chapter 8 we have included the solutions of the Cauchy type integral equations on the real line. Also, there is a section on integral equations with a logarithmic kernel. The bibliography at the end of the book has been exteded and brought up to date. I wish to thank Professor B.K. Sachdeva who has checked the revised man uscript and has suggested many improvements. Last but not least, I am grateful to the editor and staff of Birkhauser for inviting me to prepare this new edition and for their support in preparing it for publication. RamP Kanwal CHAYfERl Introduction 1.1. Definition An integral equation is an equation in which an unknown function appears under one or more integral signs Naturally, in such an equation there can occur other terms as well. For example, for a ~ s ~ b; a :( t :( b, the equations (1.1.1) f(s) = ib K(s, t)g(t)dt, g(s) = f(s) + ib K(s, t)g(t)dt, (1.1.2) g(s) = ib K(s, t)[g(t)fdt, (1.1.3) where the function g(s) is the unknown function and all the other functions are known, are integral equations. These functions may be complex-valued functions of the real variables s and t</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Integralgleichung</subfield><subfield code="0">(DE-588)4114426-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integralgleichung</subfield><subfield code="0">(DE-588)4027229-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Integralgleichung</subfield><subfield code="0">(DE-588)4114426-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Integralgleichung</subfield><subfield code="0">(DE-588)4027229-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0765-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855036</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419619 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461207658 9780817639402 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855036 |
oclc_num | 879621550 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 318 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Kanwal, Ram P. 1924-2006 Verfasser (DE-588)1055774505 aut Linear Integral Equations by Ram P. Kanwal Second Edition Boston, MA Birkhäuser Boston 1997 1 Online-Ressource (IX, 318 p) txt rdacontent c rdamedia cr rdacarrier This second edition of Linear Integral Equations continues the emphasis that the first edition placed on applications. Indeed, many more examples have been added throughout the text. Significant new material has been added in Chapters 6 and 8. For instance, in Chapter 8 we have included the solutions of the Cauchy type integral equations on the real line. Also, there is a section on integral equations with a logarithmic kernel. The bibliography at the end of the book has been exteded and brought up to date. I wish to thank Professor B.K. Sachdeva who has checked the revised man uscript and has suggested many improvements. Last but not least, I am grateful to the editor and staff of Birkhauser for inviting me to prepare this new edition and for their support in preparing it for publication. RamP Kanwal CHAYfERl Introduction 1.1. Definition An integral equation is an equation in which an unknown function appears under one or more integral signs Naturally, in such an equation there can occur other terms as well. For example, for a ~ s ~ b; a :( t :( b, the equations (1.1.1) f(s) = ib K(s, t)g(t)dt, g(s) = f(s) + ib K(s, t)g(t)dt, (1.1.2) g(s) = ib K(s, t)[g(t)fdt, (1.1.3) where the function g(s) is the unknown function and all the other functions are known, are integral equations. These functions may be complex-valued functions of the real variables s and t Mathematics Integral equations Differential Equations Integral Equations Applications of Mathematics Ordinary Differential Equations Mathematik Lineare Integralgleichung (DE-588)4114426-0 gnd rswk-swf Integralgleichung (DE-588)4027229-1 gnd rswk-swf Lineare Integralgleichung (DE-588)4114426-0 s 1\p DE-604 Integralgleichung (DE-588)4027229-1 s 2\p DE-604 https://doi.org/10.1007/978-1-4612-0765-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kanwal, Ram P. 1924-2006 Linear Integral Equations Mathematics Integral equations Differential Equations Integral Equations Applications of Mathematics Ordinary Differential Equations Mathematik Lineare Integralgleichung (DE-588)4114426-0 gnd Integralgleichung (DE-588)4027229-1 gnd |
subject_GND | (DE-588)4114426-0 (DE-588)4027229-1 |
title | Linear Integral Equations |
title_auth | Linear Integral Equations |
title_exact_search | Linear Integral Equations |
title_full | Linear Integral Equations by Ram P. Kanwal |
title_fullStr | Linear Integral Equations by Ram P. Kanwal |
title_full_unstemmed | Linear Integral Equations by Ram P. Kanwal |
title_short | Linear Integral Equations |
title_sort | linear integral equations |
topic | Mathematics Integral equations Differential Equations Integral Equations Applications of Mathematics Ordinary Differential Equations Mathematik Lineare Integralgleichung (DE-588)4114426-0 gnd Integralgleichung (DE-588)4027229-1 gnd |
topic_facet | Mathematics Integral equations Differential Equations Integral Equations Applications of Mathematics Ordinary Differential Equations Mathematik Lineare Integralgleichung Integralgleichung |
url | https://doi.org/10.1007/978-1-4612-0765-8 |
work_keys_str_mv | AT kanwalramp linearintegralequations |