Numerical Partial Differential Equations: Conservation Laws and Elliptic Equations
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1999
|
Schriftenreihe: | Texts in Applied Mathematics
33 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Of the many different approaches to solving partial differential equations numerically, this book studies difference methods. Written for the beginning graduate student in applied mathematics and engineering, this text offers a means of coming out of a course with a large number of methods that provide both theoretical knowledge and numerical experience. The reader will learn that numerical experimentation is a part of the subject of numerical solution of partial differential equations, and will be shown some uses and taught some techniques of numerical experimentation. Prerequisites suggested for using this book in a course might include at least one semester of partial differential equations and some programming capability. The author stresses the use of technology throughout the text, allowing the student to utilize it as much as possible. The use of graphics for both illustration and analysis is emphasized, and algebraic manipulators are used when convenient. This is the second volume of a two-part book |
Beschreibung: | 1 Online-Ressource (XXII, 556 p) |
ISBN: | 9781461205692 9781461268215 |
ISSN: | 0939-2475 |
DOI: | 10.1007/978-1-4612-0569-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419558 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781461205692 |c Online |9 978-1-4612-0569-2 | ||
020 | |a 9781461268215 |c Print |9 978-1-4612-6821-5 | ||
024 | 7 | |a 10.1007/978-1-4612-0569-2 |2 doi | |
035 | |a (OCoLC)864735135 | ||
035 | |a (DE-599)BVBBV042419558 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Thomas, J. W. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Numerical Partial Differential Equations |b Conservation Laws and Elliptic Equations |c by J. W. Thomas |
264 | 1 | |a New York, NY |b Springer New York |c 1999 | |
300 | |a 1 Online-Ressource (XXII, 556 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Texts in Applied Mathematics |v 33 |x 0939-2475 | |
500 | |a Of the many different approaches to solving partial differential equations numerically, this book studies difference methods. Written for the beginning graduate student in applied mathematics and engineering, this text offers a means of coming out of a course with a large number of methods that provide both theoretical knowledge and numerical experience. The reader will learn that numerical experimentation is a part of the subject of numerical solution of partial differential equations, and will be shown some uses and taught some techniques of numerical experimentation. Prerequisites suggested for using this book in a course might include at least one semester of partial differential equations and some programming capability. The author stresses the use of technology throughout the text, allowing the student to utilize it as much as possible. The use of graphics for both illustration and analysis is emphasized, and algebraic manipulators are used when convenient. This is the second volume of a two-part book | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Analysis | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Finite-Differenzen-Methode |0 (DE-588)4194626-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Parabolische Differentialgleichung |0 (DE-588)4173245-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a Finite-Differenzen-Methode |0 (DE-588)4194626-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Parabolische Differentialgleichung |0 (DE-588)4173245-5 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0569-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854975 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090357592064 |
---|---|
any_adam_object | |
author | Thomas, J. W. |
author_facet | Thomas, J. W. |
author_role | aut |
author_sort | Thomas, J. W. |
author_variant | j w t jw jwt |
building | Verbundindex |
bvnumber | BV042419558 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864735135 (DE-599)BVBBV042419558 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0569-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03639nmm a2200649zcb4500</leader><controlfield tag="001">BV042419558</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461205692</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0569-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461268215</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6821-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0569-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864735135</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419558</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thomas, J. W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Partial Differential Equations</subfield><subfield code="b">Conservation Laws and Elliptic Equations</subfield><subfield code="c">by J. W. Thomas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 556 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts in Applied Mathematics</subfield><subfield code="v">33</subfield><subfield code="x">0939-2475</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Of the many different approaches to solving partial differential equations numerically, this book studies difference methods. Written for the beginning graduate student in applied mathematics and engineering, this text offers a means of coming out of a course with a large number of methods that provide both theoretical knowledge and numerical experience. The reader will learn that numerical experimentation is a part of the subject of numerical solution of partial differential equations, and will be shown some uses and taught some techniques of numerical experimentation. Prerequisites suggested for using this book in a course might include at least one semester of partial differential equations and some programming capability. The author stresses the use of technology throughout the text, allowing the student to utilize it as much as possible. The use of graphics for both illustration and analysis is emphasized, and algebraic manipulators are used when convenient. This is the second volume of a two-part book</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Differenzen-Methode</subfield><subfield code="0">(DE-588)4194626-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Parabolische Differentialgleichung</subfield><subfield code="0">(DE-588)4173245-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Finite-Differenzen-Methode</subfield><subfield code="0">(DE-588)4194626-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Parabolische Differentialgleichung</subfield><subfield code="0">(DE-588)4173245-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0569-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854975</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419558 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461205692 9781461268215 |
issn | 0939-2475 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854975 |
oclc_num | 864735135 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXII, 556 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer New York |
record_format | marc |
series2 | Texts in Applied Mathematics |
spelling | Thomas, J. W. Verfasser aut Numerical Partial Differential Equations Conservation Laws and Elliptic Equations by J. W. Thomas New York, NY Springer New York 1999 1 Online-Ressource (XXII, 556 p) txt rdacontent c rdamedia cr rdacarrier Texts in Applied Mathematics 33 0939-2475 Of the many different approaches to solving partial differential equations numerically, this book studies difference methods. Written for the beginning graduate student in applied mathematics and engineering, this text offers a means of coming out of a course with a large number of methods that provide both theoretical knowledge and numerical experience. The reader will learn that numerical experimentation is a part of the subject of numerical solution of partial differential equations, and will be shown some uses and taught some techniques of numerical experimentation. Prerequisites suggested for using this book in a course might include at least one semester of partial differential equations and some programming capability. The author stresses the use of technology throughout the text, allowing the student to utilize it as much as possible. The use of graphics for both illustration and analysis is emphasized, and algebraic manipulators are used when convenient. This is the second volume of a two-part book Mathematics Global analysis (Mathematics) Numerical analysis Analysis Numerical Analysis Mathematik Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Finite-Differenzen-Methode (DE-588)4194626-1 gnd rswk-swf Parabolische Differentialgleichung (DE-588)4173245-5 gnd rswk-swf Elliptische Differentialgleichung (DE-588)4014485-9 gnd rswk-swf Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s Finite-Differenzen-Methode (DE-588)4194626-1 s 1\p DE-604 Hyperbolische Differentialgleichung (DE-588)4131213-2 s 2\p DE-604 Parabolische Differentialgleichung (DE-588)4173245-5 s 3\p DE-604 Elliptische Differentialgleichung (DE-588)4014485-9 s 4\p DE-604 https://doi.org/10.1007/978-1-4612-0569-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Thomas, J. W. Numerical Partial Differential Equations Conservation Laws and Elliptic Equations Mathematics Global analysis (Mathematics) Numerical analysis Analysis Numerical Analysis Mathematik Partielle Differentialgleichung (DE-588)4044779-0 gnd Finite-Differenzen-Methode (DE-588)4194626-1 gnd Parabolische Differentialgleichung (DE-588)4173245-5 gnd Elliptische Differentialgleichung (DE-588)4014485-9 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd |
subject_GND | (DE-588)4044779-0 (DE-588)4194626-1 (DE-588)4173245-5 (DE-588)4014485-9 (DE-588)4131213-2 |
title | Numerical Partial Differential Equations Conservation Laws and Elliptic Equations |
title_auth | Numerical Partial Differential Equations Conservation Laws and Elliptic Equations |
title_exact_search | Numerical Partial Differential Equations Conservation Laws and Elliptic Equations |
title_full | Numerical Partial Differential Equations Conservation Laws and Elliptic Equations by J. W. Thomas |
title_fullStr | Numerical Partial Differential Equations Conservation Laws and Elliptic Equations by J. W. Thomas |
title_full_unstemmed | Numerical Partial Differential Equations Conservation Laws and Elliptic Equations by J. W. Thomas |
title_short | Numerical Partial Differential Equations |
title_sort | numerical partial differential equations conservation laws and elliptic equations |
title_sub | Conservation Laws and Elliptic Equations |
topic | Mathematics Global analysis (Mathematics) Numerical analysis Analysis Numerical Analysis Mathematik Partielle Differentialgleichung (DE-588)4044779-0 gnd Finite-Differenzen-Methode (DE-588)4194626-1 gnd Parabolische Differentialgleichung (DE-588)4173245-5 gnd Elliptische Differentialgleichung (DE-588)4014485-9 gnd Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Numerical analysis Analysis Numerical Analysis Mathematik Partielle Differentialgleichung Finite-Differenzen-Methode Parabolische Differentialgleichung Elliptische Differentialgleichung Hyperbolische Differentialgleichung |
url | https://doi.org/10.1007/978-1-4612-0569-2 |
work_keys_str_mv | AT thomasjw numericalpartialdifferentialequationsconservationlawsandellipticequations |