Ginzburg-Landau Vortices:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1994
|
Schriftenreihe: | Progress in Nonlinear Differential Equations and Their Applications
13 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The original motivation of this study comes from the following questions that were mentioned to one ofus by H. Matano. Let 2 2 G= B = {x=(X1lX2) E 2 ; x~ + x~ = Ixl < 1}. 1 Consider the Ginzburg-Landau functional 2 2 (1) E~(u) = ~ LIVul + 4~2 L(lu1 _1)2 which is defined for maps u E H1(G;C) also identified with Hl(G;R2). Fix the boundary condition 9(X) =X on 8G and set H; = {u E H1(G;C); u = 9 on 8G}. It is easy to see that (2) is achieved by some u~ that is smooth and satisfies the Euler equation in G, -~u~ = :2 u~(1 _lu~12) (3) { on aGo u~ =9 Themaximum principleeasily implies (see e.g., F. Bethuel, H. Brezisand F. Helein (2]) that any solution u~ of (3) satisfies lu~1 ~ 1 in G. In particular, a subsequence (u~,.) converges in the w* - LOO(G) topology to a limit u* |
Beschreibung: | 1 Online-Ressource (196p) |
ISBN: | 9781461202875 9780817637231 |
DOI: | 10.1007/978-1-4612-0287-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419498 | ||
003 | DE-604 | ||
005 | 20160405 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9781461202875 |c Online |9 978-1-4612-0287-5 | ||
020 | |a 9780817637231 |c Print |9 978-0-8176-3723-1 | ||
024 | 7 | |a 10.1007/978-1-4612-0287-5 |2 doi | |
035 | |a (OCoLC)1184269404 | ||
035 | |a (DE-599)BVBBV042419498 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bethuel, Fabrice |e Verfasser |4 aut | |
245 | 1 | 0 | |a Ginzburg-Landau Vortices |c by Fabrice Bethuel, Haïm Brezis, Frédéric Hélein |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1994 | |
300 | |a 1 Online-Ressource (196p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Nonlinear Differential Equations and Their Applications |v 13 | |
500 | |a The original motivation of this study comes from the following questions that were mentioned to one ofus by H. Matano. Let 2 2 G= B = {x=(X1lX2) E 2 ; x~ + x~ = Ixl < 1}. 1 Consider the Ginzburg-Landau functional 2 2 (1) E~(u) = ~ LIVul + 4~2 L(lu1 _1)2 which is defined for maps u E H1(G;C) also identified with Hl(G;R2). Fix the boundary condition 9(X) =X on 8G and set H; = {u E H1(G;C); u = 9 on 8G}. It is easy to see that (2) is achieved by some u~ that is smooth and satisfies the Euler equation in G, -~u~ = :2 u~(1 _lu~12) (3) { on aGo u~ =9 Themaximum principleeasily implies (see e.g., F. Bethuel, H. Brezisand F. Helein (2]) that any solution u~ of (3) satisfies lu~1 ~ 1 in G. In particular, a subsequence (u~,.) converges in the w* - LOO(G) topology to a limit u* | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Supraleitung |0 (DE-588)4058651-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Suprafluidität |0 (DE-588)4184132-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ginzburg-Landau-Gleichung |0 (DE-588)4157356-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Differentialgleichung |0 (DE-588)4205536-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 2002 |z Shanghai |2 gnd-content | |
689 | 0 | 0 | |a Ginzburg-Landau-Gleichung |0 (DE-588)4157356-0 |D s |
689 | 0 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Supraleitung |0 (DE-588)4058651-0 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Nichtlineare Differentialgleichung |0 (DE-588)4205536-2 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
689 | 3 | 0 | |a Suprafluidität |0 (DE-588)4184132-3 |D s |
689 | 3 | |8 5\p |5 DE-604 | |
700 | 1 | |a Brezis, Haïm |e Sonstige |4 oth | |
700 | 1 | |a Hélein, Frédéric |d 1963- |e Sonstige |0 (DE-588)172705681 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0287-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854915 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090243297280 |
---|---|
any_adam_object | |
author | Bethuel, Fabrice |
author_GND | (DE-588)172705681 |
author_facet | Bethuel, Fabrice |
author_role | aut |
author_sort | Bethuel, Fabrice |
author_variant | f b fb |
building | Verbundindex |
bvnumber | BV042419498 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184269404 (DE-599)BVBBV042419498 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0287-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03710nmm a2200721zcb4500</leader><controlfield tag="001">BV042419498</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160405 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461202875</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0287-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817637231</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-3723-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0287-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184269404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419498</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bethuel, Fabrice</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ginzburg-Landau Vortices</subfield><subfield code="c">by Fabrice Bethuel, Haïm Brezis, Frédéric Hélein</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (196p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Nonlinear Differential Equations and Their Applications</subfield><subfield code="v">13</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The original motivation of this study comes from the following questions that were mentioned to one ofus by H. Matano. Let 2 2 G= B = {x=(X1lX2) E 2 ; x~ + x~ = Ixl < 1}. 1 Consider the Ginzburg-Landau functional 2 2 (1) E~(u) = ~ LIVul + 4~2 L(lu1 _1)2 which is defined for maps u E H1(G;C) also identified with Hl(G;R2). Fix the boundary condition 9(X) =X on 8G and set H; = {u E H1(G;C); u = 9 on 8G}. It is easy to see that (2) is achieved by some u~ that is smooth and satisfies the Euler equation in G, -~u~ = :2 u~(1 _lu~12) (3) { on aGo u~ =9 Themaximum principleeasily implies (see e.g., F. Bethuel, H. Brezisand F. Helein (2]) that any solution u~ of (3) satisfies lu~1 ~ 1 in G. In particular, a subsequence (u~,.) converges in the w* - LOO(G) topology to a limit u*</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Supraleitung</subfield><subfield code="0">(DE-588)4058651-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Suprafluidität</subfield><subfield code="0">(DE-588)4184132-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ginzburg-Landau-Gleichung</subfield><subfield code="0">(DE-588)4157356-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Differentialgleichung</subfield><subfield code="0">(DE-588)4205536-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2002</subfield><subfield code="z">Shanghai</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ginzburg-Landau-Gleichung</subfield><subfield code="0">(DE-588)4157356-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Supraleitung</subfield><subfield code="0">(DE-588)4058651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Nichtlineare Differentialgleichung</subfield><subfield code="0">(DE-588)4205536-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Suprafluidität</subfield><subfield code="0">(DE-588)4184132-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brezis, Haïm</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hélein, Frédéric</subfield><subfield code="d">1963-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)172705681</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0287-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854915</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 2002 Shanghai gnd-content |
genre_facet | Konferenzschrift 2002 Shanghai |
id | DE-604.BV042419498 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781461202875 9780817637231 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854915 |
oclc_num | 1184269404 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (196p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Nonlinear Differential Equations and Their Applications |
spelling | Bethuel, Fabrice Verfasser aut Ginzburg-Landau Vortices by Fabrice Bethuel, Haïm Brezis, Frédéric Hélein Boston, MA Birkhäuser Boston 1994 1 Online-Ressource (196p) txt rdacontent c rdamedia cr rdacarrier Progress in Nonlinear Differential Equations and Their Applications 13 The original motivation of this study comes from the following questions that were mentioned to one ofus by H. Matano. Let 2 2 G= B = {x=(X1lX2) E 2 ; x~ + x~ = Ixl < 1}. 1 Consider the Ginzburg-Landau functional 2 2 (1) E~(u) = ~ LIVul + 4~2 L(lu1 _1)2 which is defined for maps u E H1(G;C) also identified with Hl(G;R2). Fix the boundary condition 9(X) =X on 8G and set H; = {u E H1(G;C); u = 9 on 8G}. It is easy to see that (2) is achieved by some u~ that is smooth and satisfies the Euler equation in G, -~u~ = :2 u~(1 _lu~12) (3) { on aGo u~ =9 Themaximum principleeasily implies (see e.g., F. Bethuel, H. Brezisand F. Helein (2]) that any solution u~ of (3) satisfies lu~1 ~ 1 in G. In particular, a subsequence (u~,.) converges in the w* - LOO(G) topology to a limit u* Mathematics Differential equations, partial Mathematical physics Partial Differential Equations Applications of Mathematics Mathematical Methods in Physics Mathematik Mathematische Physik Supraleitung (DE-588)4058651-0 gnd rswk-swf Suprafluidität (DE-588)4184132-3 gnd rswk-swf Ginzburg-Landau-Gleichung (DE-588)4157356-0 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 2002 Shanghai gnd-content Ginzburg-Landau-Gleichung (DE-588)4157356-0 s Mathematische Physik (DE-588)4037952-8 s 2\p DE-604 Supraleitung (DE-588)4058651-0 s 3\p DE-604 Nichtlineare Differentialgleichung (DE-588)4205536-2 s 4\p DE-604 Suprafluidität (DE-588)4184132-3 s 5\p DE-604 Brezis, Haïm Sonstige oth Hélein, Frédéric 1963- Sonstige (DE-588)172705681 oth https://doi.org/10.1007/978-1-4612-0287-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bethuel, Fabrice Ginzburg-Landau Vortices Mathematics Differential equations, partial Mathematical physics Partial Differential Equations Applications of Mathematics Mathematical Methods in Physics Mathematik Mathematische Physik Supraleitung (DE-588)4058651-0 gnd Suprafluidität (DE-588)4184132-3 gnd Ginzburg-Landau-Gleichung (DE-588)4157356-0 gnd Mathematische Physik (DE-588)4037952-8 gnd Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd |
subject_GND | (DE-588)4058651-0 (DE-588)4184132-3 (DE-588)4157356-0 (DE-588)4037952-8 (DE-588)4205536-2 (DE-588)1071861417 |
title | Ginzburg-Landau Vortices |
title_auth | Ginzburg-Landau Vortices |
title_exact_search | Ginzburg-Landau Vortices |
title_full | Ginzburg-Landau Vortices by Fabrice Bethuel, Haïm Brezis, Frédéric Hélein |
title_fullStr | Ginzburg-Landau Vortices by Fabrice Bethuel, Haïm Brezis, Frédéric Hélein |
title_full_unstemmed | Ginzburg-Landau Vortices by Fabrice Bethuel, Haïm Brezis, Frédéric Hélein |
title_short | Ginzburg-Landau Vortices |
title_sort | ginzburg landau vortices |
topic | Mathematics Differential equations, partial Mathematical physics Partial Differential Equations Applications of Mathematics Mathematical Methods in Physics Mathematik Mathematische Physik Supraleitung (DE-588)4058651-0 gnd Suprafluidität (DE-588)4184132-3 gnd Ginzburg-Landau-Gleichung (DE-588)4157356-0 gnd Mathematische Physik (DE-588)4037952-8 gnd Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd |
topic_facet | Mathematics Differential equations, partial Mathematical physics Partial Differential Equations Applications of Mathematics Mathematical Methods in Physics Mathematik Mathematische Physik Supraleitung Suprafluidität Ginzburg-Landau-Gleichung Nichtlineare Differentialgleichung Konferenzschrift 2002 Shanghai |
url | https://doi.org/10.1007/978-1-4612-0287-5 |
work_keys_str_mv | AT bethuelfabrice ginzburglandauvortices AT brezishaim ginzburglandauvortices AT heleinfrederic ginzburglandauvortices |