Introduction to Tensor Products of Banach Spaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Springer London
2002
|
Schriftenreihe: | Springer Monographs in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is intended as an introduction to the theory of tensor products of Banach spaces. The prerequisites for reading the book are a first course in Functional Analysis and in Measure Theory, as far as the Radon-Nikodym theorem. The book is entirely self-contained and two appendices give additional material on Banach Spaces and Measure Theory that may be unfamiliar to the beginner. No knowledge of tensor products is assumed. Our viewpoint is that tensor products are a natural and productive way to understand many of the themes of modern Banach space theory and that "tensorial thinking" yields insights into many otherwise mysterious phenom ena. We hope to convince the reader of the validity of this belief. We begin in Chapter 1 with a treatment of the purely algebraic theory of tensor products of vector spaces. We emphasize the use of the tensor product as a linearizing tool and we explain the use of tensor products in the duality theory of spaces of operators in finite dimensions. The ideas developed here, though simple, are fundamental for the rest of the book |
Beschreibung: | 1 Online-Ressource (XIV, 226 p) |
ISBN: | 9781447139034 9781849968720 |
ISSN: | 1439-7382 |
DOI: | 10.1007/978-1-4471-3903-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419394 | ||
003 | DE-604 | ||
005 | 20180131 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9781447139034 |c Online |9 978-1-4471-3903-4 | ||
020 | |a 9781849968720 |c Print |9 978-1-84996-872-0 | ||
024 | 7 | |a 10.1007/978-1-4471-3903-4 |2 doi | |
035 | |a (OCoLC)864079578 | ||
035 | |a (DE-599)BVBBV042419394 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Ryan, Raymond A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to Tensor Products of Banach Spaces |c by Raymond A. Ryan |
264 | 1 | |a London |b Springer London |c 2002 | |
300 | |a 1 Online-Ressource (XIV, 226 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Monographs in Mathematics |x 1439-7382 | |
500 | |a This book is intended as an introduction to the theory of tensor products of Banach spaces. The prerequisites for reading the book are a first course in Functional Analysis and in Measure Theory, as far as the Radon-Nikodym theorem. The book is entirely self-contained and two appendices give additional material on Banach Spaces and Measure Theory that may be unfamiliar to the beginner. No knowledge of tensor products is assumed. Our viewpoint is that tensor products are a natural and productive way to understand many of the themes of modern Banach space theory and that "tensorial thinking" yields insights into many otherwise mysterious phenom ena. We hope to convince the reader of the validity of this belief. We begin in Chapter 1 with a treatment of the purely algebraic theory of tensor products of vector spaces. We emphasize the use of the tensor product as a linearizing tool and we explain the use of tensor products in the duality theory of spaces of operators in finite dimensions. The ideas developed here, though simple, are fundamental for the rest of the book | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Banach-Raum |0 (DE-588)4004402-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tensorprodukt |0 (DE-588)4059478-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Banach-Raum |0 (DE-588)4004402-6 |D s |
689 | 0 | 1 | |a Tensorprodukt |0 (DE-588)4059478-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4471-3903-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854811 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089960181760 |
---|---|
any_adam_object | |
author | Ryan, Raymond A. |
author_facet | Ryan, Raymond A. |
author_role | aut |
author_sort | Ryan, Raymond A. |
author_variant | r a r ra rar |
building | Verbundindex |
bvnumber | BV042419394 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864079578 (DE-599)BVBBV042419394 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4471-3903-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02713nmm a2200481zc 4500</leader><controlfield tag="001">BV042419394</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180131 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447139034</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4471-3903-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781849968720</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-84996-872-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4471-3903-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864079578</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419394</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ryan, Raymond A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Tensor Products of Banach Spaces</subfield><subfield code="c">by Raymond A. Ryan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer London</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 226 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Monographs in Mathematics</subfield><subfield code="x">1439-7382</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is intended as an introduction to the theory of tensor products of Banach spaces. The prerequisites for reading the book are a first course in Functional Analysis and in Measure Theory, as far as the Radon-Nikodym theorem. The book is entirely self-contained and two appendices give additional material on Banach Spaces and Measure Theory that may be unfamiliar to the beginner. No knowledge of tensor products is assumed. Our viewpoint is that tensor products are a natural and productive way to understand many of the themes of modern Banach space theory and that "tensorial thinking" yields insights into many otherwise mysterious phenom ena. We hope to convince the reader of the validity of this belief. We begin in Chapter 1 with a treatment of the purely algebraic theory of tensor products of vector spaces. We emphasize the use of the tensor product as a linearizing tool and we explain the use of tensor products in the duality theory of spaces of operators in finite dimensions. The ideas developed here, though simple, are fundamental for the rest of the book</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tensorprodukt</subfield><subfield code="0">(DE-588)4059478-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Tensorprodukt</subfield><subfield code="0">(DE-588)4059478-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4471-3903-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854811</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419394 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781447139034 9781849968720 |
issn | 1439-7382 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854811 |
oclc_num | 864079578 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 226 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer London |
record_format | marc |
series2 | Springer Monographs in Mathematics |
spelling | Ryan, Raymond A. Verfasser aut Introduction to Tensor Products of Banach Spaces by Raymond A. Ryan London Springer London 2002 1 Online-Ressource (XIV, 226 p) txt rdacontent c rdamedia cr rdacarrier Springer Monographs in Mathematics 1439-7382 This book is intended as an introduction to the theory of tensor products of Banach spaces. The prerequisites for reading the book are a first course in Functional Analysis and in Measure Theory, as far as the Radon-Nikodym theorem. The book is entirely self-contained and two appendices give additional material on Banach Spaces and Measure Theory that may be unfamiliar to the beginner. No knowledge of tensor products is assumed. Our viewpoint is that tensor products are a natural and productive way to understand many of the themes of modern Banach space theory and that "tensorial thinking" yields insights into many otherwise mysterious phenom ena. We hope to convince the reader of the validity of this belief. We begin in Chapter 1 with a treatment of the purely algebraic theory of tensor products of vector spaces. We emphasize the use of the tensor product as a linearizing tool and we explain the use of tensor products in the duality theory of spaces of operators in finite dimensions. The ideas developed here, though simple, are fundamental for the rest of the book Mathematics Global analysis (Mathematics) Analysis Mathematik Banach-Raum (DE-588)4004402-6 gnd rswk-swf Tensorprodukt (DE-588)4059478-6 gnd rswk-swf Banach-Raum (DE-588)4004402-6 s Tensorprodukt (DE-588)4059478-6 s 1\p DE-604 https://doi.org/10.1007/978-1-4471-3903-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ryan, Raymond A. Introduction to Tensor Products of Banach Spaces Mathematics Global analysis (Mathematics) Analysis Mathematik Banach-Raum (DE-588)4004402-6 gnd Tensorprodukt (DE-588)4059478-6 gnd |
subject_GND | (DE-588)4004402-6 (DE-588)4059478-6 |
title | Introduction to Tensor Products of Banach Spaces |
title_auth | Introduction to Tensor Products of Banach Spaces |
title_exact_search | Introduction to Tensor Products of Banach Spaces |
title_full | Introduction to Tensor Products of Banach Spaces by Raymond A. Ryan |
title_fullStr | Introduction to Tensor Products of Banach Spaces by Raymond A. Ryan |
title_full_unstemmed | Introduction to Tensor Products of Banach Spaces by Raymond A. Ryan |
title_short | Introduction to Tensor Products of Banach Spaces |
title_sort | introduction to tensor products of banach spaces |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Banach-Raum (DE-588)4004402-6 gnd Tensorprodukt (DE-588)4059478-6 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Banach-Raum Tensorprodukt |
url | https://doi.org/10.1007/978-1-4471-3903-4 |
work_keys_str_mv | AT ryanraymonda introductiontotensorproductsofbanachspaces |