Basic Stochastic Processes: A Course Through Exercises
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Springer London
1999
|
Schriftenreihe: | Springer Undergraduate Mathematics Series
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book has been designed for a final year undergraduate course in stochastic processes. It will also be suitable for mathematics undergraduates and others with interest in probability and stochastic processes, who wish to study on their own. The main prerequisite is probability theory: probability measures, random variables, expectation, independence, conditional probability, and the laws of large numbers. The only other prerequisite is calculus. This covers limits, series, the notion of continuity, differentiation and the Riemann integral. Familiarity with the Lebesgue integral would be a bonus. A certain level of fundamental mathematical experience, such as elementary set theory, is assumed implicitly. Throughout the book the exposition is interlaced with numerous exercises, which form an integral part of the course. Complete solutions are provided at the end of each chapter. Also, each exercise is accompanied by a hint to guide the reader in an informal manner. This feature will be particularly useful for self-study and may be of help in tutorials. It also presents a challenge for the lecturer to involve the students as active participants in the course |
Beschreibung: | 1 Online-Ressource (X, 225p. 21 illus) |
ISBN: | 9781447105336 9783540761754 |
ISSN: | 1615-2085 |
DOI: | 10.1007/978-1-4471-0533-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419360 | ||
003 | DE-604 | ||
005 | 20200427 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781447105336 |c Online |9 978-1-4471-0533-6 | ||
020 | |a 9783540761754 |c Print |9 978-3-540-76175-4 | ||
024 | 7 | |a 10.1007/978-1-4471-0533-6 |2 doi | |
035 | |a (OCoLC)863754537 | ||
035 | |a (DE-599)BVBBV042419360 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Brzeźniak, Zdzisław |d 1958- |e Verfasser |0 (DE-588)120071193 |4 aut | |
245 | 1 | 0 | |a Basic Stochastic Processes |b A Course Through Exercises |c by Zdzisław Brzeźniak, Tomasz Zastawniak |
264 | 1 | |a London |b Springer London |c 1999 | |
300 | |a 1 Online-Ressource (X, 225p. 21 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Undergraduate Mathematics Series |x 1615-2085 | |
500 | |a This book has been designed for a final year undergraduate course in stochastic processes. It will also be suitable for mathematics undergraduates and others with interest in probability and stochastic processes, who wish to study on their own. The main prerequisite is probability theory: probability measures, random variables, expectation, independence, conditional probability, and the laws of large numbers. The only other prerequisite is calculus. This covers limits, series, the notion of continuity, differentiation and the Riemann integral. Familiarity with the Lebesgue integral would be a bonus. A certain level of fundamental mathematical experience, such as elementary set theory, is assumed implicitly. Throughout the book the exposition is interlaced with numerous exercises, which form an integral part of the course. Complete solutions are provided at the end of each chapter. Also, each exercise is accompanied by a hint to guide the reader in an informal manner. This feature will be particularly useful for self-study and may be of help in tutorials. It also presents a challenge for the lecturer to involve the students as active participants in the course | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Astronomy, Observations and Techniques | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Zastawniak, Tomasz |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4471-0533-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854777 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089906704384 |
---|---|
any_adam_object | |
author | Brzeźniak, Zdzisław 1958- |
author_GND | (DE-588)120071193 |
author_facet | Brzeźniak, Zdzisław 1958- |
author_role | aut |
author_sort | Brzeźniak, Zdzisław 1958- |
author_variant | z b zb |
building | Verbundindex |
bvnumber | BV042419360 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863754537 (DE-599)BVBBV042419360 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4471-0533-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03085nmm a2200505zc 4500</leader><controlfield tag="001">BV042419360</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200427 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447105336</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4471-0533-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540761754</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-76175-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4471-0533-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863754537</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419360</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brzeźniak, Zdzisław</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120071193</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Basic Stochastic Processes</subfield><subfield code="b">A Course Through Exercises</subfield><subfield code="c">by Zdzisław Brzeźniak, Tomasz Zastawniak</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer London</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 225p. 21 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Undergraduate Mathematics Series</subfield><subfield code="x">1615-2085</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book has been designed for a final year undergraduate course in stochastic processes. It will also be suitable for mathematics undergraduates and others with interest in probability and stochastic processes, who wish to study on their own. The main prerequisite is probability theory: probability measures, random variables, expectation, independence, conditional probability, and the laws of large numbers. The only other prerequisite is calculus. This covers limits, series, the notion of continuity, differentiation and the Riemann integral. Familiarity with the Lebesgue integral would be a bonus. A certain level of fundamental mathematical experience, such as elementary set theory, is assumed implicitly. Throughout the book the exposition is interlaced with numerous exercises, which form an integral part of the course. Complete solutions are provided at the end of each chapter. Also, each exercise is accompanied by a hint to guide the reader in an informal manner. This feature will be particularly useful for self-study and may be of help in tutorials. It also presents a challenge for the lecturer to involve the students as active participants in the course</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astronomy, Observations and Techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zastawniak, Tomasz</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4471-0533-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854777</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV042419360 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781447105336 9783540761754 |
issn | 1615-2085 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854777 |
oclc_num | 863754537 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 225p. 21 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer London |
record_format | marc |
series2 | Springer Undergraduate Mathematics Series |
spelling | Brzeźniak, Zdzisław 1958- Verfasser (DE-588)120071193 aut Basic Stochastic Processes A Course Through Exercises by Zdzisław Brzeźniak, Tomasz Zastawniak London Springer London 1999 1 Online-Ressource (X, 225p. 21 illus) txt rdacontent c rdamedia cr rdacarrier Springer Undergraduate Mathematics Series 1615-2085 This book has been designed for a final year undergraduate course in stochastic processes. It will also be suitable for mathematics undergraduates and others with interest in probability and stochastic processes, who wish to study on their own. The main prerequisite is probability theory: probability measures, random variables, expectation, independence, conditional probability, and the laws of large numbers. The only other prerequisite is calculus. This covers limits, series, the notion of continuity, differentiation and the Riemann integral. Familiarity with the Lebesgue integral would be a bonus. A certain level of fundamental mathematical experience, such as elementary set theory, is assumed implicitly. Throughout the book the exposition is interlaced with numerous exercises, which form an integral part of the course. Complete solutions are provided at the end of each chapter. Also, each exercise is accompanied by a hint to guide the reader in an informal manner. This feature will be particularly useful for self-study and may be of help in tutorials. It also presents a challenge for the lecturer to involve the students as active participants in the course Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Astronomy, Observations and Techniques Mathematik Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Stochastischer Prozess (DE-588)4057630-9 s 2\p DE-604 Zastawniak, Tomasz Sonstige oth https://doi.org/10.1007/978-1-4471-0533-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Brzeźniak, Zdzisław 1958- Basic Stochastic Processes A Course Through Exercises Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Astronomy, Observations and Techniques Mathematik Stochastischer Prozess (DE-588)4057630-9 gnd |
subject_GND | (DE-588)4057630-9 (DE-588)4151278-9 |
title | Basic Stochastic Processes A Course Through Exercises |
title_auth | Basic Stochastic Processes A Course Through Exercises |
title_exact_search | Basic Stochastic Processes A Course Through Exercises |
title_full | Basic Stochastic Processes A Course Through Exercises by Zdzisław Brzeźniak, Tomasz Zastawniak |
title_fullStr | Basic Stochastic Processes A Course Through Exercises by Zdzisław Brzeźniak, Tomasz Zastawniak |
title_full_unstemmed | Basic Stochastic Processes A Course Through Exercises by Zdzisław Brzeźniak, Tomasz Zastawniak |
title_short | Basic Stochastic Processes |
title_sort | basic stochastic processes a course through exercises |
title_sub | A Course Through Exercises |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Astronomy, Observations and Techniques Mathematik Stochastischer Prozess (DE-588)4057630-9 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Astronomy, Observations and Techniques Mathematik Stochastischer Prozess Einführung |
url | https://doi.org/10.1007/978-1-4471-0533-6 |
work_keys_str_mv | AT brzezniakzdzisław basicstochasticprocessesacoursethroughexercises AT zastawniaktomasz basicstochasticprocessesacoursethroughexercises |