Advanced topics in computational number theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2000
|
Schriftenreihe: | Graduate Texts in Mathematics
193 |
Schlagworte: | |
Online-Zugang: | UBM01 Volltext |
Beschreibung: | The computation of invariants of algebraic number fields such as integral bases, discriminants, prime decompositions, ideal class groups, and unit groups is important both for its own sake and for its numerous applications, for example, to the solution of Diophantine equations. The practical com pletion of this task (sometimes known as the Dedekind program) has been one of the major achievements of computational number theory in the past ten years, thanks to the efforts of many people. Even though some practical problems still exist, one can consider the subject as solved in a satisfactory manner, and it is now routine to ask a specialized Computer Algebra Sys tem such as Kant/Kash, liDIA, Magma, or Pari/GP, to perform number field computations that would have been unfeasible only ten years ago. The (very numerous) algorithms used are essentially all described in A Course in Com putational Algebraic Number Theory, GTM 138, first published in 1993 (third corrected printing 1996), which is referred to here as [CohO]. That text also treats other subjects such as elliptic curves, factoring, and primality testing. Itis important and natural to generalize these algorithms. Several gener alizations can be considered, but the most important are certainly the gen eralizations to global function fields (finite extensions of the field of rational functions in one variable overa finite field) and to relative extensions ofnum ber fields. As in [CohO], in the present book we will consider number fields only and not deal at all with function fields |
Beschreibung: | 1 Online-Ressource (XV, 581 p) |
ISBN: | 9781441984890 9781461264194 |
ISSN: | 0072-5285 |
DOI: | 10.1007/978-1-4419-8489-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419266 | ||
003 | DE-604 | ||
005 | 20200505 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781441984890 |c Online |9 978-1-4419-8489-0 | ||
020 | |a 9781461264194 |c Print |9 978-1-4612-6419-4 | ||
024 | 7 | |a 10.1007/978-1-4419-8489-0 |2 doi | |
035 | |a (OCoLC)869868542 | ||
035 | |a (DE-599)BVBBV042419266 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-19 |a DE-634 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Cohen, Henri |d 1947- |e Verfasser |0 (DE-588)1018621717 |4 aut | |
245 | 1 | 0 | |a Advanced topics in computational number theory |c by Henri Cohen |
264 | 1 | |a New York, NY |b Springer New York |c 2000 | |
300 | |a 1 Online-Ressource (XV, 581 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Graduate Texts in Mathematics |v 193 |x 0072-5285 | |
500 | |a The computation of invariants of algebraic number fields such as integral bases, discriminants, prime decompositions, ideal class groups, and unit groups is important both for its own sake and for its numerous applications, for example, to the solution of Diophantine equations. The practical com pletion of this task (sometimes known as the Dedekind program) has been one of the major achievements of computational number theory in the past ten years, thanks to the efforts of many people. Even though some practical problems still exist, one can consider the subject as solved in a satisfactory manner, and it is now routine to ask a specialized Computer Algebra Sys tem such as Kant/Kash, liDIA, Magma, or Pari/GP, to perform number field computations that would have been unfeasible only ten years ago. The (very numerous) algorithms used are essentially all described in A Course in Com putational Algebraic Number Theory, GTM 138, first published in 1993 (third corrected printing 1996), which is referred to here as [CohO]. That text also treats other subjects such as elliptic curves, factoring, and primality testing. Itis important and natural to generalize these algorithms. Several gener alizations can be considered, but the most important are certainly the gen eralizations to global function fields (finite extensions of the field of rational functions in one variable overa finite field) and to relative extensions ofnum ber fields. As in [CohO], in the present book we will consider number fields only and not deal at all with function fields | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computeralgebra |0 (DE-588)4010449-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenverarbeitung |0 (DE-588)4011152-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | 1 | |a Computeralgebra |0 (DE-588)4010449-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 1 | 1 | |a Datenverarbeitung |0 (DE-588)4011152-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4419-8489-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE |a ZDB-30-PQE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854683 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://ebookcentral.proquest.com/lib/ub-lmu/detail.action?docID=3074292 |l UBM01 |p ZDB-30-PQE |q UBM_Einzelkauf20 |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804153089707474944 |
---|---|
any_adam_object | |
author | Cohen, Henri 1947- |
author_GND | (DE-588)1018621717 |
author_facet | Cohen, Henri 1947- |
author_role | aut |
author_sort | Cohen, Henri 1947- |
author_variant | h c hc |
building | Verbundindex |
bvnumber | BV042419266 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE ZDB-30-PQE |
ctrlnum | (OCoLC)869868542 (DE-599)BVBBV042419266 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4419-8489-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03711nmm a2200565zcb4500</leader><controlfield tag="001">BV042419266</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200505 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441984890</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4419-8489-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461264194</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6419-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4419-8489-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869868542</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419266</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cohen, Henri</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1018621717</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced topics in computational number theory</subfield><subfield code="c">by Henri Cohen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 581 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">193</subfield><subfield code="x">0072-5285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The computation of invariants of algebraic number fields such as integral bases, discriminants, prime decompositions, ideal class groups, and unit groups is important both for its own sake and for its numerous applications, for example, to the solution of Diophantine equations. The practical com pletion of this task (sometimes known as the Dedekind program) has been one of the major achievements of computational number theory in the past ten years, thanks to the efforts of many people. Even though some practical problems still exist, one can consider the subject as solved in a satisfactory manner, and it is now routine to ask a specialized Computer Algebra Sys tem such as Kant/Kash, liDIA, Magma, or Pari/GP, to perform number field computations that would have been unfeasible only ten years ago. The (very numerous) algorithms used are essentially all described in A Course in Com putational Algebraic Number Theory, GTM 138, first published in 1993 (third corrected printing 1996), which is referred to here as [CohO]. That text also treats other subjects such as elliptic curves, factoring, and primality testing. Itis important and natural to generalize these algorithms. Several gener alizations can be considered, but the most important are certainly the gen eralizations to global function fields (finite extensions of the field of rational functions in one variable overa finite field) and to relative extensions ofnum ber fields. As in [CohO], in the present book we will consider number fields only and not deal at all with function fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4419-8489-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854683</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/ub-lmu/detail.action?docID=3074292</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBM_Einzelkauf20</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042419266 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781441984890 9781461264194 |
issn | 0072-5285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854683 |
oclc_num | 869868542 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-634 |
physical | 1 Online-Ressource (XV, 581 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-30-PQE ZDB-2-SMA_Archive ZDB-30-PQE UBM_Einzelkauf20 |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer New York |
record_format | marc |
series2 | Graduate Texts in Mathematics |
spelling | Cohen, Henri 1947- Verfasser (DE-588)1018621717 aut Advanced topics in computational number theory by Henri Cohen New York, NY Springer New York 2000 1 Online-Ressource (XV, 581 p) txt rdacontent c rdamedia cr rdacarrier Graduate Texts in Mathematics 193 0072-5285 The computation of invariants of algebraic number fields such as integral bases, discriminants, prime decompositions, ideal class groups, and unit groups is important both for its own sake and for its numerous applications, for example, to the solution of Diophantine equations. The practical com pletion of this task (sometimes known as the Dedekind program) has been one of the major achievements of computational number theory in the past ten years, thanks to the efforts of many people. Even though some practical problems still exist, one can consider the subject as solved in a satisfactory manner, and it is now routine to ask a specialized Computer Algebra Sys tem such as Kant/Kash, liDIA, Magma, or Pari/GP, to perform number field computations that would have been unfeasible only ten years ago. The (very numerous) algorithms used are essentially all described in A Course in Com putational Algebraic Number Theory, GTM 138, first published in 1993 (third corrected printing 1996), which is referred to here as [CohO]. That text also treats other subjects such as elliptic curves, factoring, and primality testing. Itis important and natural to generalize these algorithms. Several gener alizations can be considered, but the most important are certainly the gen eralizations to global function fields (finite extensions of the field of rational functions in one variable overa finite field) and to relative extensions ofnum ber fields. As in [CohO], in the present book we will consider number fields only and not deal at all with function fields Mathematics Combinatorics Number theory Number Theory Mathematik Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Computeralgebra (DE-588)4010449-7 gnd rswk-swf Datenverarbeitung (DE-588)4011152-0 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 s Computeralgebra (DE-588)4010449-7 s 1\p DE-604 Datenverarbeitung (DE-588)4011152-0 s 2\p DE-604 https://doi.org/10.1007/978-1-4419-8489-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cohen, Henri 1947- Advanced topics in computational number theory Mathematics Combinatorics Number theory Number Theory Mathematik Zahlentheorie (DE-588)4067277-3 gnd Computeralgebra (DE-588)4010449-7 gnd Datenverarbeitung (DE-588)4011152-0 gnd |
subject_GND | (DE-588)4067277-3 (DE-588)4010449-7 (DE-588)4011152-0 |
title | Advanced topics in computational number theory |
title_auth | Advanced topics in computational number theory |
title_exact_search | Advanced topics in computational number theory |
title_full | Advanced topics in computational number theory by Henri Cohen |
title_fullStr | Advanced topics in computational number theory by Henri Cohen |
title_full_unstemmed | Advanced topics in computational number theory by Henri Cohen |
title_short | Advanced topics in computational number theory |
title_sort | advanced topics in computational number theory |
topic | Mathematics Combinatorics Number theory Number Theory Mathematik Zahlentheorie (DE-588)4067277-3 gnd Computeralgebra (DE-588)4010449-7 gnd Datenverarbeitung (DE-588)4011152-0 gnd |
topic_facet | Mathematics Combinatorics Number theory Number Theory Mathematik Zahlentheorie Computeralgebra Datenverarbeitung |
url | https://doi.org/10.1007/978-1-4419-8489-0 |
work_keys_str_mv | AT cohenhenri advancedtopicsincomputationalnumbertheory |