An Introduction to the Langlands Program:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2004
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | For the past several decades the theory of automorphic forms has become a major focal point of development in number theory and algebraic geometry, with applications in many diverse areas, including combinatorics and mathematical physics. The twelve chapters of this monograph present a broad, user-friendly introduction to the Langlands program, that is, the theory of automorphic forms and its connection with the theory of L-functions and other fields of mathematics. Key features of this self-contained presentation: A variety of areas in number theory from the classical zeta function up to the Langlands program are covered. The exposition is systematic, with each chapter focusing on a particular topic devoted to special cases of the program: • Basic zeta function of Riemann and its generalizations to Dirichlet and Hecke L-functions, class field theory and some topics on classical automorphic functions (E. Kowalski) • A study of the conjectures of Artin and Shimura–Taniyama–Weil (E. de Shalit) • An examination of classical modular (automorphic) L-functions as GL(2) functions, bringing into play the theory of representations (S.S. Kudla) • Selberg's theory of the trace formula, which is a way to study automorphic representations (D. Bump) • Discussion of cuspidal automorphic representations of GL(2,(A)) leads to Langlands theory for GL(n) and the importance of the Langlands dual group (J.W. Cogdell) • An introduction to the geometric Langlands program, a new and active area of research that permits using powerful methods of algebraic geometry to construct automorphic sheaves (D. Gaitsgory) Graduate students and researchers will benefit from this beautiful text |
Beschreibung: | 1 Online-Ressource (IX, 281 p) |
ISBN: | 9780817682262 9780817632113 |
DOI: | 10.1007/978-0-8176-8226-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419218 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9780817682262 |c Online |9 978-0-8176-8226-2 | ||
020 | |a 9780817632113 |c Print |9 978-0-8176-3211-3 | ||
024 | 7 | |a 10.1007/978-0-8176-8226-2 |2 doi | |
035 | |a (OCoLC)867181481 | ||
035 | |a (DE-599)BVBBV042419218 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bump, D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a An Introduction to the Langlands Program |c by D. Bump, J. W. Cogdell, E. Shalit, D. Gaitsgory, E. Kowalski, S. S. Kudla ; edited by Joseph Bernstein, Stephen Gelbart |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2004 | |
300 | |a 1 Online-Ressource (IX, 281 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a For the past several decades the theory of automorphic forms has become a major focal point of development in number theory and algebraic geometry, with applications in many diverse areas, including combinatorics and mathematical physics. The twelve chapters of this monograph present a broad, user-friendly introduction to the Langlands program, that is, the theory of automorphic forms and its connection with the theory of L-functions and other fields of mathematics. Key features of this self-contained presentation: A variety of areas in number theory from the classical zeta function up to the Langlands program are covered. The exposition is systematic, with each chapter focusing on a particular topic devoted to special cases of the program: • Basic zeta function of Riemann and its generalizations to Dirichlet and Hecke L-functions, class field theory and some topics on classical automorphic functions (E. Kowalski) • A study of the conjectures of Artin and Shimura–Taniyama–Weil (E. de Shalit) • An examination of classical modular (automorphic) L-functions as GL(2) functions, bringing into play the theory of representations (S.S. Kudla) • Selberg's theory of the trace formula, which is a way to study automorphic representations (D. Bump) • Discussion of cuspidal automorphic representations of GL(2,(A)) leads to Langlands theory for GL(n) and the importance of the Langlands dual group (J.W. Cogdell) • An introduction to the geometric Langlands program, a new and active area of research that permits using powerful methods of algebraic geometry to construct automorphic sheaves (D. Gaitsgory) Graduate students and researchers will benefit from this beautiful text | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a L-Funktion |0 (DE-588)4137026-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Automorphe Form |0 (DE-588)4003972-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Automorphe Form |0 (DE-588)4003972-9 |D s |
689 | 0 | 1 | |a L-Funktion |0 (DE-588)4137026-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Cogdell, J. W. |e Sonstige |4 oth | |
700 | 1 | |a Shalit, E. |e Sonstige |4 oth | |
700 | 1 | |a Gaitsgory, D. |e Sonstige |4 oth | |
700 | 1 | |a Kowalski, E. |e Sonstige |4 oth | |
700 | 1 | |a Kudla, S. S. |e Sonstige |4 oth | |
700 | 1 | |a Bernstein, Joseph |e Sonstige |4 oth | |
700 | 1 | |a Gelbart, Stephen |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-8176-8226-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854635 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089609957376 |
---|---|
any_adam_object | |
author | Bump, D. |
author_facet | Bump, D. |
author_role | aut |
author_sort | Bump, D. |
author_variant | d b db |
building | Verbundindex |
bvnumber | BV042419218 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)867181481 (DE-599)BVBBV042419218 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-8176-8226-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03831nmm a2200601zc 4500</leader><controlfield tag="001">BV042419218</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817682262</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-8176-8226-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817632113</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-3211-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-8176-8226-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)867181481</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419218</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bump, D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An Introduction to the Langlands Program</subfield><subfield code="c">by D. Bump, J. W. Cogdell, E. Shalit, D. Gaitsgory, E. Kowalski, S. S. Kudla ; edited by Joseph Bernstein, Stephen Gelbart</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 281 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">For the past several decades the theory of automorphic forms has become a major focal point of development in number theory and algebraic geometry, with applications in many diverse areas, including combinatorics and mathematical physics. The twelve chapters of this monograph present a broad, user-friendly introduction to the Langlands program, that is, the theory of automorphic forms and its connection with the theory of L-functions and other fields of mathematics. Key features of this self-contained presentation: A variety of areas in number theory from the classical zeta function up to the Langlands program are covered. The exposition is systematic, with each chapter focusing on a particular topic devoted to special cases of the program: • Basic zeta function of Riemann and its generalizations to Dirichlet and Hecke L-functions, class field theory and some topics on classical automorphic functions (E. Kowalski) • A study of the conjectures of Artin and Shimura–Taniyama–Weil (E. de Shalit) • An examination of classical modular (automorphic) L-functions as GL(2) functions, bringing into play the theory of representations (S.S. Kudla) • Selberg's theory of the trace formula, which is a way to study automorphic representations (D. Bump) • Discussion of cuspidal automorphic representations of GL(2,(A)) leads to Langlands theory for GL(n) and the importance of the Langlands dual group (J.W. Cogdell) • An introduction to the geometric Langlands program, a new and active area of research that permits using powerful methods of algebraic geometry to construct automorphic sheaves (D. Gaitsgory) Graduate students and researchers will benefit from this beautiful text</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">L-Funktion</subfield><subfield code="0">(DE-588)4137026-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automorphe Form</subfield><subfield code="0">(DE-588)4003972-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Automorphe Form</subfield><subfield code="0">(DE-588)4003972-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">L-Funktion</subfield><subfield code="0">(DE-588)4137026-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cogdell, J. W.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shalit, E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gaitsgory, D.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kowalski, E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kudla, S. S.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bernstein, Joseph</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gelbart, Stephen</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-8176-8226-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854635</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419218 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780817682262 9780817632113 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854635 |
oclc_num | 867181481 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 281 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Bump, D. Verfasser aut An Introduction to the Langlands Program by D. Bump, J. W. Cogdell, E. Shalit, D. Gaitsgory, E. Kowalski, S. S. Kudla ; edited by Joseph Bernstein, Stephen Gelbart Boston, MA Birkhäuser Boston 2004 1 Online-Ressource (IX, 281 p) txt rdacontent c rdamedia cr rdacarrier For the past several decades the theory of automorphic forms has become a major focal point of development in number theory and algebraic geometry, with applications in many diverse areas, including combinatorics and mathematical physics. The twelve chapters of this monograph present a broad, user-friendly introduction to the Langlands program, that is, the theory of automorphic forms and its connection with the theory of L-functions and other fields of mathematics. Key features of this self-contained presentation: A variety of areas in number theory from the classical zeta function up to the Langlands program are covered. The exposition is systematic, with each chapter focusing on a particular topic devoted to special cases of the program: • Basic zeta function of Riemann and its generalizations to Dirichlet and Hecke L-functions, class field theory and some topics on classical automorphic functions (E. Kowalski) • A study of the conjectures of Artin and Shimura–Taniyama–Weil (E. de Shalit) • An examination of classical modular (automorphic) L-functions as GL(2) functions, bringing into play the theory of representations (S.S. Kudla) • Selberg's theory of the trace formula, which is a way to study automorphic representations (D. Bump) • Discussion of cuspidal automorphic representations of GL(2,(A)) leads to Langlands theory for GL(n) and the importance of the Langlands dual group (J.W. Cogdell) • An introduction to the geometric Langlands program, a new and active area of research that permits using powerful methods of algebraic geometry to construct automorphic sheaves (D. Gaitsgory) Graduate students and researchers will benefit from this beautiful text Mathematics Geometry, algebraic Topological Groups Number theory Number Theory Algebraic Geometry Topological Groups, Lie Groups Mathematik L-Funktion (DE-588)4137026-0 gnd rswk-swf Automorphe Form (DE-588)4003972-9 gnd rswk-swf Automorphe Form (DE-588)4003972-9 s L-Funktion (DE-588)4137026-0 s 1\p DE-604 Cogdell, J. W. Sonstige oth Shalit, E. Sonstige oth Gaitsgory, D. Sonstige oth Kowalski, E. Sonstige oth Kudla, S. S. Sonstige oth Bernstein, Joseph Sonstige oth Gelbart, Stephen Sonstige oth https://doi.org/10.1007/978-0-8176-8226-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bump, D. An Introduction to the Langlands Program Mathematics Geometry, algebraic Topological Groups Number theory Number Theory Algebraic Geometry Topological Groups, Lie Groups Mathematik L-Funktion (DE-588)4137026-0 gnd Automorphe Form (DE-588)4003972-9 gnd |
subject_GND | (DE-588)4137026-0 (DE-588)4003972-9 |
title | An Introduction to the Langlands Program |
title_auth | An Introduction to the Langlands Program |
title_exact_search | An Introduction to the Langlands Program |
title_full | An Introduction to the Langlands Program by D. Bump, J. W. Cogdell, E. Shalit, D. Gaitsgory, E. Kowalski, S. S. Kudla ; edited by Joseph Bernstein, Stephen Gelbart |
title_fullStr | An Introduction to the Langlands Program by D. Bump, J. W. Cogdell, E. Shalit, D. Gaitsgory, E. Kowalski, S. S. Kudla ; edited by Joseph Bernstein, Stephen Gelbart |
title_full_unstemmed | An Introduction to the Langlands Program by D. Bump, J. W. Cogdell, E. Shalit, D. Gaitsgory, E. Kowalski, S. S. Kudla ; edited by Joseph Bernstein, Stephen Gelbart |
title_short | An Introduction to the Langlands Program |
title_sort | an introduction to the langlands program |
topic | Mathematics Geometry, algebraic Topological Groups Number theory Number Theory Algebraic Geometry Topological Groups, Lie Groups Mathematik L-Funktion (DE-588)4137026-0 gnd Automorphe Form (DE-588)4003972-9 gnd |
topic_facet | Mathematics Geometry, algebraic Topological Groups Number theory Number Theory Algebraic Geometry Topological Groups, Lie Groups Mathematik L-Funktion Automorphe Form |
url | https://doi.org/10.1007/978-0-8176-8226-2 |
work_keys_str_mv | AT bumpd anintroductiontothelanglandsprogram AT cogdelljw anintroductiontothelanglandsprogram AT shalite anintroductiontothelanglandsprogram AT gaitsgoryd anintroductiontothelanglandsprogram AT kowalskie anintroductiontothelanglandsprogram AT kudlass anintroductiontothelanglandsprogram AT bernsteinjoseph anintroductiontothelanglandsprogram AT gelbartstephen anintroductiontothelanglandsprogram |