A Topological Introduction to Nonlinear Analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2004
|
Ausgabe: | Second Edition |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Here is a book that will be a joy to the mathematician or graduate student of mathematics – or even the well-prepared undergraduate – who would like, with a minimum of background and preparation, to understand some of the beautiful results at the heart of nonlinear analysis. Based on carefully-expounded ideas from several branches of topology, and illustrated by a wealth of figures that attest to the geometric nature of the exposition, the book will be of immense help in providing its readers with an understanding of the mathematics of the nonlinear phenomena that characterize our real world. This book is ideal for self-study for mathematicians and students interested in such areas of geometric and algebraic topology, functional analysis, differential equations, and applied mathematics. It is a sharply focused and highly readable view of nonlinear analysis by a practicing topologist who has seen a clear path to understanding |
Beschreibung: | 1 Online-Ressource (XIII, 184 p) |
ISBN: | 9780817681241 9780817632588 |
DOI: | 10.1007/978-0-8176-8124-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419173 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9780817681241 |c Online |9 978-0-8176-8124-1 | ||
020 | |a 9780817632588 |c Print |9 978-0-8176-3258-8 | ||
024 | 7 | |a 10.1007/978-0-8176-8124-1 |2 doi | |
035 | |a (OCoLC)724541381 | ||
035 | |a (DE-599)BVBBV042419173 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Brown, Robert F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A Topological Introduction to Nonlinear Analysis |c by Robert F. Brown |
250 | |a Second Edition | ||
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2004 | |
300 | |a 1 Online-Ressource (XIII, 184 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Here is a book that will be a joy to the mathematician or graduate student of mathematics – or even the well-prepared undergraduate – who would like, with a minimum of background and preparation, to understand some of the beautiful results at the heart of nonlinear analysis. Based on carefully-expounded ideas from several branches of topology, and illustrated by a wealth of figures that attest to the geometric nature of the exposition, the book will be of immense help in providing its readers with an understanding of the mathematics of the nonlinear phenomena that characterize our real world. This book is ideal for self-study for mathematicians and students interested in such areas of geometric and algebraic topology, functional analysis, differential equations, and applied mathematics. It is a sharply focused and highly readable view of nonlinear analysis by a practicing topologist who has seen a clear path to understanding | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Topology | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Nichtlineare Funktionalanalysis |0 (DE-588)4042093-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Analysis |0 (DE-588)4177490-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Analysis |0 (DE-588)4177490-5 |D s |
689 | 0 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Nichtlineare Funktionalanalysis |0 (DE-588)4042093-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-8176-8124-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854589 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089480982528 |
---|---|
any_adam_object | |
author | Brown, Robert F. |
author_facet | Brown, Robert F. |
author_role | aut |
author_sort | Brown, Robert F. |
author_variant | r f b rf rfb |
building | Verbundindex |
bvnumber | BV042419173 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)724541381 (DE-599)BVBBV042419173 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-8176-8124-1 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03041nmm a2200589zc 4500</leader><controlfield tag="001">BV042419173</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817681241</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-8176-8124-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817632588</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-3258-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-8176-8124-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)724541381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419173</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brown, Robert F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Topological Introduction to Nonlinear Analysis</subfield><subfield code="c">by Robert F. Brown</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 184 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Here is a book that will be a joy to the mathematician or graduate student of mathematics – or even the well-prepared undergraduate – who would like, with a minimum of background and preparation, to understand some of the beautiful results at the heart of nonlinear analysis. Based on carefully-expounded ideas from several branches of topology, and illustrated by a wealth of figures that attest to the geometric nature of the exposition, the book will be of immense help in providing its readers with an understanding of the mathematics of the nonlinear phenomena that characterize our real world. This book is ideal for self-study for mathematicians and students interested in such areas of geometric and algebraic topology, functional analysis, differential equations, and applied mathematics. It is a sharply focused and highly readable view of nonlinear analysis by a practicing topologist who has seen a clear path to understanding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Funktionalanalysis</subfield><subfield code="0">(DE-588)4042093-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Analysis</subfield><subfield code="0">(DE-588)4177490-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Analysis</subfield><subfield code="0">(DE-588)4177490-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineare Funktionalanalysis</subfield><subfield code="0">(DE-588)4042093-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-8176-8124-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854589</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419173 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780817681241 9780817632588 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854589 |
oclc_num | 724541381 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 184 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Brown, Robert F. Verfasser aut A Topological Introduction to Nonlinear Analysis by Robert F. Brown Second Edition Boston, MA Birkhäuser Boston 2004 1 Online-Ressource (XIII, 184 p) txt rdacontent c rdamedia cr rdacarrier Here is a book that will be a joy to the mathematician or graduate student of mathematics – or even the well-prepared undergraduate – who would like, with a minimum of background and preparation, to understand some of the beautiful results at the heart of nonlinear analysis. Based on carefully-expounded ideas from several branches of topology, and illustrated by a wealth of figures that attest to the geometric nature of the exposition, the book will be of immense help in providing its readers with an understanding of the mathematics of the nonlinear phenomena that characterize our real world. This book is ideal for self-study for mathematicians and students interested in such areas of geometric and algebraic topology, functional analysis, differential equations, and applied mathematics. It is a sharply focused and highly readable view of nonlinear analysis by a practicing topologist who has seen a clear path to understanding Mathematics Functional analysis Differential Equations Differential equations, partial Topology Functional Analysis Ordinary Differential Equations Partial Differential Equations Mathematik Nichtlineare Funktionalanalysis (DE-588)4042093-0 gnd rswk-swf Nichtlineare Analysis (DE-588)4177490-5 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Nichtlineare Analysis (DE-588)4177490-5 s Topologie (DE-588)4060425-1 s 1\p DE-604 Nichtlineare Funktionalanalysis (DE-588)4042093-0 s 2\p DE-604 https://doi.org/10.1007/978-0-8176-8124-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Brown, Robert F. A Topological Introduction to Nonlinear Analysis Mathematics Functional analysis Differential Equations Differential equations, partial Topology Functional Analysis Ordinary Differential Equations Partial Differential Equations Mathematik Nichtlineare Funktionalanalysis (DE-588)4042093-0 gnd Nichtlineare Analysis (DE-588)4177490-5 gnd Topologie (DE-588)4060425-1 gnd |
subject_GND | (DE-588)4042093-0 (DE-588)4177490-5 (DE-588)4060425-1 |
title | A Topological Introduction to Nonlinear Analysis |
title_auth | A Topological Introduction to Nonlinear Analysis |
title_exact_search | A Topological Introduction to Nonlinear Analysis |
title_full | A Topological Introduction to Nonlinear Analysis by Robert F. Brown |
title_fullStr | A Topological Introduction to Nonlinear Analysis by Robert F. Brown |
title_full_unstemmed | A Topological Introduction to Nonlinear Analysis by Robert F. Brown |
title_short | A Topological Introduction to Nonlinear Analysis |
title_sort | a topological introduction to nonlinear analysis |
topic | Mathematics Functional analysis Differential Equations Differential equations, partial Topology Functional Analysis Ordinary Differential Equations Partial Differential Equations Mathematik Nichtlineare Funktionalanalysis (DE-588)4042093-0 gnd Nichtlineare Analysis (DE-588)4177490-5 gnd Topologie (DE-588)4060425-1 gnd |
topic_facet | Mathematics Functional analysis Differential Equations Differential equations, partial Topology Functional Analysis Ordinary Differential Equations Partial Differential Equations Mathematik Nichtlineare Funktionalanalysis Nichtlineare Analysis Topologie |
url | https://doi.org/10.1007/978-0-8176-8124-1 |
work_keys_str_mv | AT brownrobertf atopologicalintroductiontononlinearanalysis |