Semiconcave Functions, Hamilton - Jacobi Equations, and Optimal Control:
Saved in:
Bibliographic Details
Main Author: Cannarsa, Piermarco 1957- (Author)
Format: Electronic eBook
Language:English
Published: Boston, MA Birkhäuser Boston 2004
Series:Progress in Nonlinear Differential Equations and Their Applications 58
Subjects:
Online Access:Volltext
Item Description:Semiconcavity is a natural generalization of concavity that retains most of the good properties known in convex analysis, but arises in a wider range of applications. This text is the first comprehensive exposition of the theory of semiconcave functions, and of the role they play in optimal control and Hamilton–Jacobi equations. The first part covers the general theory, encompassing all key results and illustrating them with significant examples. The latter part is devoted to applications concerning the Bolza problem in the calculus of variations and optimal exit time problems for nonlinear control systems. The exposition is essentially self-contained since the book includes all prerequisites from convex analysis, nonsmooth analysis, and viscosity solutions. A central role in the present work is reserved for the study of singularities. Singularities are first investigated for general semiconcave functions, then sharply estimated for solutions of Hamilton–Jacobi equations, and finally analyzed in connection with optimal trajectories of control systems. Researchers in optimal control, the calculus of variations, and partial differential equations will find this book useful as a state-of-the-art reference for semiconcave functions. Graduate students will profit from this text as it provides a handy—yet rigorous—introduction to modern dynamic programming for nonlinear control systems
Physical Description:1 Online-Ressource (XIV, 304 p)
ISBN:9780817644130
9780817643362
DOI:10.1007/b138356

There is no print copy available.

Interlibrary loan Place Request Caution: Not in THWS collection! Get full text