Spatial Statistics and Computational Methods:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2003
|
Schriftenreihe: | Lecture Notes in Statistics
173 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Spatial statistics and Markov Chain Monte Carlo (MCMC) techniques have each undergone major developments in the last decade. Also, these two areas are mutually reinforcing, because MCMC methods are often necessary for the practical implementation of spatial statistical inference, while new spatial stochastic models in turn motivate the development of improved MCMC algorithms. This volume shows how sophisticated spatial statistical and computational methods apply to a range of problems of increasing importance for applications in science and technology. It consists of four chapters: 1. Petros Dellaportas and Gareth O. Roberts give a tutorial on MCMC methods, the computational methodology which is essential for virtually all the complex spatial models to be considered in subsequent chapters. 2. Peter J. Diggle, Paulo J, Ribeiro Jr., and Ole F. Christensen introduce the reader to the model- based approach to geostatistics, i.e. the application of general statistical principles to the formulation of explicit stochastic models for geostatistical data, and to inference within a declared class of models. 3. Merrilee A. Hurn, Oddvar K. Husby, and H?vard Rue discuss various aspects of image analysis, ranging from low to high level tasks, and illustrated with different examples of applications. 4. Jesper Moller and Rasmus P. Waggepetersen collect recent theoretical advances in simulation-based inference for spatial point processes, and discuss some examples of applications. The volume introduces topics of current interest in spatial and computational statistics, which should be accessible to postgraduate students as well as to experienced statistical researchers. It is partly based on the course material for the "TMR and MaPhySto Summer School on Spatial Statistics and Computational Methods," held at Aalborg University, Denmark, August 19-22, 2001 |
Beschreibung: | 1 Online-Ressource (XIV, 205 p) |
ISBN: | 9780387218113 9780387001364 |
ISSN: | 0930-0325 |
DOI: | 10.1007/978-0-387-21811-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419001 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780387218113 |c Online |9 978-0-387-21811-3 | ||
020 | |a 9780387001364 |c Print |9 978-0-387-00136-4 | ||
024 | 7 | |a 10.1007/978-0-387-21811-3 |2 doi | |
035 | |a (OCoLC)864053338 | ||
035 | |a (DE-599)BVBBV042419001 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Møller, Jesper |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spatial Statistics and Computational Methods |c edited by Jesper Møller |
264 | 1 | |a New York, NY |b Springer New York |c 2003 | |
300 | |a 1 Online-Ressource (XIV, 205 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Statistics |v 173 |x 0930-0325 | |
500 | |a Spatial statistics and Markov Chain Monte Carlo (MCMC) techniques have each undergone major developments in the last decade. Also, these two areas are mutually reinforcing, because MCMC methods are often necessary for the practical implementation of spatial statistical inference, while new spatial stochastic models in turn motivate the development of improved MCMC algorithms. This volume shows how sophisticated spatial statistical and computational methods apply to a range of problems of increasing importance for applications in science and technology. It consists of four chapters: 1. Petros Dellaportas and Gareth O. Roberts give a tutorial on MCMC methods, the computational methodology which is essential for virtually all the complex spatial models to be considered in subsequent chapters. 2. Peter J. Diggle, Paulo J, Ribeiro Jr., and Ole F. Christensen introduce the reader to the model- based approach to geostatistics, i.e. the application of general statistical principles to the formulation of explicit stochastic models for geostatistical data, and to inference within a declared class of models. 3. Merrilee A. Hurn, Oddvar K. Husby, and H?vard Rue discuss various aspects of image analysis, ranging from low to high level tasks, and illustrated with different examples of applications. 4. Jesper Moller and Rasmus P. Waggepetersen collect recent theoretical advances in simulation-based inference for spatial point processes, and discuss some examples of applications. The volume introduces topics of current interest in spatial and computational statistics, which should be accessible to postgraduate students as well as to experienced statistical researchers. It is partly based on the course material for the "TMR and MaPhySto Summer School on Spatial Statistics and Computational Methods," held at Aalborg University, Denmark, August 19-22, 2001 | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Mathematical statistics | |
650 | 4 | |a Statistical Theory and Methods | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Markov-Ketten-Monte-Carlo-Verfahren |0 (DE-588)4508520-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Räumliche Statistik |0 (DE-588)4386767-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Räumliche Statistik |0 (DE-588)4386767-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Markov-Ketten-Monte-Carlo-Verfahren |0 (DE-588)4508520-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-387-21811-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854418 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089141243904 |
---|---|
any_adam_object | |
author | Møller, Jesper |
author_facet | Møller, Jesper |
author_role | aut |
author_sort | Møller, Jesper |
author_variant | j m jm |
building | Verbundindex |
bvnumber | BV042419001 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864053338 (DE-599)BVBBV042419001 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-387-21811-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03698nmm a2200505zcb4500</leader><controlfield tag="001">BV042419001</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387218113</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-21811-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387001364</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-00136-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-387-21811-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864053338</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419001</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Møller, Jesper</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatial Statistics and Computational Methods</subfield><subfield code="c">edited by Jesper Møller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 205 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Statistics</subfield><subfield code="v">173</subfield><subfield code="x">0930-0325</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Spatial statistics and Markov Chain Monte Carlo (MCMC) techniques have each undergone major developments in the last decade. Also, these two areas are mutually reinforcing, because MCMC methods are often necessary for the practical implementation of spatial statistical inference, while new spatial stochastic models in turn motivate the development of improved MCMC algorithms. This volume shows how sophisticated spatial statistical and computational methods apply to a range of problems of increasing importance for applications in science and technology. It consists of four chapters: 1. Petros Dellaportas and Gareth O. Roberts give a tutorial on MCMC methods, the computational methodology which is essential for virtually all the complex spatial models to be considered in subsequent chapters. 2. Peter J. Diggle, Paulo J, Ribeiro Jr., and Ole F. Christensen introduce the reader to the model- based approach to geostatistics, i.e. the application of general statistical principles to the formulation of explicit stochastic models for geostatistical data, and to inference within a declared class of models. 3. Merrilee A. Hurn, Oddvar K. Husby, and H?vard Rue discuss various aspects of image analysis, ranging from low to high level tasks, and illustrated with different examples of applications. 4. Jesper Moller and Rasmus P. Waggepetersen collect recent theoretical advances in simulation-based inference for spatial point processes, and discuss some examples of applications. The volume introduces topics of current interest in spatial and computational statistics, which should be accessible to postgraduate students as well as to experienced statistical researchers. It is partly based on the course material for the "TMR and MaPhySto Summer School on Spatial Statistics and Computational Methods," held at Aalborg University, Denmark, August 19-22, 2001</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Theory and Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Ketten-Monte-Carlo-Verfahren</subfield><subfield code="0">(DE-588)4508520-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Räumliche Statistik</subfield><subfield code="0">(DE-588)4386767-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Räumliche Statistik</subfield><subfield code="0">(DE-588)4386767-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Markov-Ketten-Monte-Carlo-Verfahren</subfield><subfield code="0">(DE-588)4508520-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-387-21811-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854418</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419001 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:03Z |
institution | BVB |
isbn | 9780387218113 9780387001364 |
issn | 0930-0325 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854418 |
oclc_num | 864053338 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 205 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer New York |
record_format | marc |
series2 | Lecture Notes in Statistics |
spelling | Møller, Jesper Verfasser aut Spatial Statistics and Computational Methods edited by Jesper Møller New York, NY Springer New York 2003 1 Online-Ressource (XIV, 205 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Statistics 173 0930-0325 Spatial statistics and Markov Chain Monte Carlo (MCMC) techniques have each undergone major developments in the last decade. Also, these two areas are mutually reinforcing, because MCMC methods are often necessary for the practical implementation of spatial statistical inference, while new spatial stochastic models in turn motivate the development of improved MCMC algorithms. This volume shows how sophisticated spatial statistical and computational methods apply to a range of problems of increasing importance for applications in science and technology. It consists of four chapters: 1. Petros Dellaportas and Gareth O. Roberts give a tutorial on MCMC methods, the computational methodology which is essential for virtually all the complex spatial models to be considered in subsequent chapters. 2. Peter J. Diggle, Paulo J, Ribeiro Jr., and Ole F. Christensen introduce the reader to the model- based approach to geostatistics, i.e. the application of general statistical principles to the formulation of explicit stochastic models for geostatistical data, and to inference within a declared class of models. 3. Merrilee A. Hurn, Oddvar K. Husby, and H?vard Rue discuss various aspects of image analysis, ranging from low to high level tasks, and illustrated with different examples of applications. 4. Jesper Moller and Rasmus P. Waggepetersen collect recent theoretical advances in simulation-based inference for spatial point processes, and discuss some examples of applications. The volume introduces topics of current interest in spatial and computational statistics, which should be accessible to postgraduate students as well as to experienced statistical researchers. It is partly based on the course material for the "TMR and MaPhySto Summer School on Spatial Statistics and Computational Methods," held at Aalborg University, Denmark, August 19-22, 2001 Statistics Mathematical statistics Statistical Theory and Methods Statistik Markov-Ketten-Monte-Carlo-Verfahren (DE-588)4508520-1 gnd rswk-swf Räumliche Statistik (DE-588)4386767-4 gnd rswk-swf Räumliche Statistik (DE-588)4386767-4 s 1\p DE-604 Markov-Ketten-Monte-Carlo-Verfahren (DE-588)4508520-1 s 2\p DE-604 https://doi.org/10.1007/978-0-387-21811-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Møller, Jesper Spatial Statistics and Computational Methods Statistics Mathematical statistics Statistical Theory and Methods Statistik Markov-Ketten-Monte-Carlo-Verfahren (DE-588)4508520-1 gnd Räumliche Statistik (DE-588)4386767-4 gnd |
subject_GND | (DE-588)4508520-1 (DE-588)4386767-4 |
title | Spatial Statistics and Computational Methods |
title_auth | Spatial Statistics and Computational Methods |
title_exact_search | Spatial Statistics and Computational Methods |
title_full | Spatial Statistics and Computational Methods edited by Jesper Møller |
title_fullStr | Spatial Statistics and Computational Methods edited by Jesper Møller |
title_full_unstemmed | Spatial Statistics and Computational Methods edited by Jesper Møller |
title_short | Spatial Statistics and Computational Methods |
title_sort | spatial statistics and computational methods |
topic | Statistics Mathematical statistics Statistical Theory and Methods Statistik Markov-Ketten-Monte-Carlo-Verfahren (DE-588)4508520-1 gnd Räumliche Statistik (DE-588)4386767-4 gnd |
topic_facet | Statistics Mathematical statistics Statistical Theory and Methods Statistik Markov-Ketten-Monte-Carlo-Verfahren Räumliche Statistik |
url | https://doi.org/10.1007/978-0-387-21811-3 |
work_keys_str_mv | AT møllerjesper spatialstatisticsandcomputationalmethods |