A Short Introduction to Intuitionistic Logic:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2000
|
Schriftenreihe: | The University Series in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Intuitionistic logic is presented here as part of familiar classical logic which allows mechanical extraction of programs from proofs. to make the material more accessible, basic techniques are presented first for propositional logic; Part II contains extensions to predicate logic. This material provides an introduction and a safe background for reading research literature in logic and computer science as well as advanced monographs. Readers are assumed to be familiar with basic notions of first order logic. One device for making this book short was inventing new proofs of several theorems. The presentation is based on natural deduction. The topics include programming interpretation of intuitionistic logic by simply typed lambda-calculus (Curry-Howard isomorphism), negative translation of classical into intuitionistic logic, normalization of natural deductions, applications to category theory, Kripke models, algebraic and topological semantics, proof-search methods, interpolation theorem. The text developed from materal for several courses taught at Stanford University in 1992-1999 |
Beschreibung: | 1 Online-Ressource (IX, 131 p) |
ISBN: | 9780306469756 9780306463945 |
DOI: | 10.1007/b115304 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042418877 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9780306469756 |c Online |9 978-0-306-46975-6 | ||
020 | |a 9780306463945 |c Print |9 978-0-306-46394-5 | ||
024 | 7 | |a 10.1007/b115304 |2 doi | |
035 | |a (OCoLC)879625121 | ||
035 | |a (DE-599)BVBBV042418877 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.3 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Mints, Grigori |e Verfasser |4 aut | |
245 | 1 | 0 | |a A Short Introduction to Intuitionistic Logic |c by Grigori Mints |
264 | 1 | |a Boston, MA |b Springer US |c 2000 | |
300 | |a 1 Online-Ressource (IX, 131 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a The University Series in Mathematics | |
500 | |a Intuitionistic logic is presented here as part of familiar classical logic which allows mechanical extraction of programs from proofs. to make the material more accessible, basic techniques are presented first for propositional logic; Part II contains extensions to predicate logic. This material provides an introduction and a safe background for reading research literature in logic and computer science as well as advanced monographs. Readers are assumed to be familiar with basic notions of first order logic. One device for making this book short was inventing new proofs of several theorems. The presentation is based on natural deduction. The topics include programming interpretation of intuitionistic logic by simply typed lambda-calculus (Curry-Howard isomorphism), negative translation of classical into intuitionistic logic, normalization of natural deductions, applications to category theory, Kripke models, algebraic and topological semantics, proof-search methods, interpolation theorem. The text developed from materal for several courses taught at Stanford University in 1992-1999 | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Logic | |
650 | 4 | |a Computer science | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Mathematical Logic and Foundations | |
650 | 4 | |a Mathematics of Computing | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Intuitionistische Logik |0 (DE-588)4162199-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Intuitionistische Logik |0 (DE-588)4162199-2 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/b115304 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854294 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153088858128384 |
---|---|
any_adam_object | |
author | Mints, Grigori |
author_facet | Mints, Grigori |
author_role | aut |
author_sort | Mints, Grigori |
author_variant | g m gm |
building | Verbundindex |
bvnumber | BV042418877 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879625121 (DE-599)BVBBV042418877 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b115304 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02907nmm a2200529zc 4500</leader><controlfield tag="001">BV042418877</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780306469756</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-306-46975-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780306463945</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-306-46394-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b115304</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879625121</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042418877</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mints, Grigori</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Short Introduction to Intuitionistic Logic</subfield><subfield code="c">by Grigori Mints</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 131 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The University Series in Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Intuitionistic logic is presented here as part of familiar classical logic which allows mechanical extraction of programs from proofs. to make the material more accessible, basic techniques are presented first for propositional logic; Part II contains extensions to predicate logic. This material provides an introduction and a safe background for reading research literature in logic and computer science as well as advanced monographs. Readers are assumed to be familiar with basic notions of first order logic. One device for making this book short was inventing new proofs of several theorems. The presentation is based on natural deduction. The topics include programming interpretation of intuitionistic logic by simply typed lambda-calculus (Curry-Howard isomorphism), negative translation of classical into intuitionistic logic, normalization of natural deductions, applications to category theory, Kripke models, algebraic and topological semantics, proof-search methods, interpolation theorem. The text developed from materal for several courses taught at Stanford University in 1992-1999</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics of Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Intuitionistische Logik</subfield><subfield code="0">(DE-588)4162199-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Intuitionistische Logik</subfield><subfield code="0">(DE-588)4162199-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b115304</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854294</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV042418877 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:03Z |
institution | BVB |
isbn | 9780306469756 9780306463945 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854294 |
oclc_num | 879625121 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 131 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer US |
record_format | marc |
series2 | The University Series in Mathematics |
spelling | Mints, Grigori Verfasser aut A Short Introduction to Intuitionistic Logic by Grigori Mints Boston, MA Springer US 2000 1 Online-Ressource (IX, 131 p) txt rdacontent c rdamedia cr rdacarrier The University Series in Mathematics Intuitionistic logic is presented here as part of familiar classical logic which allows mechanical extraction of programs from proofs. to make the material more accessible, basic techniques are presented first for propositional logic; Part II contains extensions to predicate logic. This material provides an introduction and a safe background for reading research literature in logic and computer science as well as advanced monographs. Readers are assumed to be familiar with basic notions of first order logic. One device for making this book short was inventing new proofs of several theorems. The presentation is based on natural deduction. The topics include programming interpretation of intuitionistic logic by simply typed lambda-calculus (Curry-Howard isomorphism), negative translation of classical into intuitionistic logic, normalization of natural deductions, applications to category theory, Kripke models, algebraic and topological semantics, proof-search methods, interpolation theorem. The text developed from materal for several courses taught at Stanford University in 1992-1999 Mathematics Logic Computer science Logic, Symbolic and mathematical Mathematical Logic and Foundations Mathematics of Computing Informatik Mathematik Intuitionistische Logik (DE-588)4162199-2 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Intuitionistische Logik (DE-588)4162199-2 s 2\p DE-604 https://doi.org/10.1007/b115304 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mints, Grigori A Short Introduction to Intuitionistic Logic Mathematics Logic Computer science Logic, Symbolic and mathematical Mathematical Logic and Foundations Mathematics of Computing Informatik Mathematik Intuitionistische Logik (DE-588)4162199-2 gnd |
subject_GND | (DE-588)4162199-2 (DE-588)4151278-9 |
title | A Short Introduction to Intuitionistic Logic |
title_auth | A Short Introduction to Intuitionistic Logic |
title_exact_search | A Short Introduction to Intuitionistic Logic |
title_full | A Short Introduction to Intuitionistic Logic by Grigori Mints |
title_fullStr | A Short Introduction to Intuitionistic Logic by Grigori Mints |
title_full_unstemmed | A Short Introduction to Intuitionistic Logic by Grigori Mints |
title_short | A Short Introduction to Intuitionistic Logic |
title_sort | a short introduction to intuitionistic logic |
topic | Mathematics Logic Computer science Logic, Symbolic and mathematical Mathematical Logic and Foundations Mathematics of Computing Informatik Mathematik Intuitionistische Logik (DE-588)4162199-2 gnd |
topic_facet | Mathematics Logic Computer science Logic, Symbolic and mathematical Mathematical Logic and Foundations Mathematics of Computing Informatik Mathematik Intuitionistische Logik Einführung |
url | https://doi.org/10.1007/b115304 |
work_keys_str_mv | AT mintsgrigori ashortintroductiontointuitionisticlogic |