Non-Linear Variability in Geophysics: Scaling and Fractals
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1991
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | consequences of broken symmetry -here parity-is studied. In this model, turbulence is dominated by a hierarchy of helical (corkscrew) structures. The authors stress the unique features of such pseudo-scalar cascades as well as the extreme nature of the resulting (intermittent) fluctuations. Intermittent turbulent cascades was also the theme of a paper by us in which we show that universality classes exist for continuous cascades (in which an infinite number of cascade steps occur over a finite range of scales). This result is the multiplicative analogue of the familiar central limit theorem for the addition of random variables. Finally, an interesting paper by Pasmanter investigates the scaling associated with anomolous diffusion in a chaotic tidal basin model involving a small number of degrees of freedom. Although the statistical literature is replete with techniques for dealing with those random processes characterized by both exponentially decaying (non-scaling) autocorrelations and exponentially decaying probability distributions, there is a real paucity of literature appropriate for geophysical fields exhibiting either scaling over wide ranges (e. g. algebraic autocorrelations) or extreme fluctuations (e. g. algebraic probabilities, divergence of high order statistical moments). In fact, about the only relevant technique that is regularly used -fourier analysis (energy spectra) -permits only an estimate of a single (power law) exponent. If the fields were mono-fractal (characterized by a single fractal dimension) this would be sufficient, however their generally multifractal character calls for the development of new techniques |
Beschreibung: | 1 Online-Ressource (X, 318 p) |
ISBN: | 9789400921474 9789401074667 |
DOI: | 10.1007/978-94-009-2147-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042414999 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1991 |||| o||u| ||||||eng d | ||
020 | |a 9789400921474 |c Online |9 978-94-009-2147-4 | ||
020 | |a 9789401074667 |c Print |9 978-94-010-7466-7 | ||
024 | 7 | |a 10.1007/978-94-009-2147-4 |2 doi | |
035 | |a (OCoLC)905486082 | ||
035 | |a (DE-599)BVBBV042414999 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 550 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Schertzer, D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Non-Linear Variability in Geophysics |b Scaling and Fractals |c edited by D. Schertzer, S. Lovejoy |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1991 | |
300 | |a 1 Online-Ressource (X, 318 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a consequences of broken symmetry -here parity-is studied. In this model, turbulence is dominated by a hierarchy of helical (corkscrew) structures. The authors stress the unique features of such pseudo-scalar cascades as well as the extreme nature of the resulting (intermittent) fluctuations. Intermittent turbulent cascades was also the theme of a paper by us in which we show that universality classes exist for continuous cascades (in which an infinite number of cascade steps occur over a finite range of scales). This result is the multiplicative analogue of the familiar central limit theorem for the addition of random variables. Finally, an interesting paper by Pasmanter investigates the scaling associated with anomolous diffusion in a chaotic tidal basin model involving a small number of degrees of freedom. Although the statistical literature is replete with techniques for dealing with those random processes characterized by both exponentially decaying (non-scaling) autocorrelations and exponentially decaying probability distributions, there is a real paucity of literature appropriate for geophysical fields exhibiting either scaling over wide ranges (e. g. algebraic autocorrelations) or extreme fluctuations (e. g. algebraic probabilities, divergence of high order statistical moments). In fact, about the only relevant technique that is regularly used -fourier analysis (energy spectra) -permits only an estimate of a single (power law) exponent. If the fields were mono-fractal (characterized by a single fractal dimension) this would be sufficient, however their generally multifractal character calls for the development of new techniques | ||
650 | 4 | |a Physics | |
650 | 4 | |a Physical geography | |
650 | 4 | |a Remote sensing | |
650 | 4 | |a Geophysics and Environmental Physics | |
650 | 4 | |a Geophysics/Geodesy | |
650 | 4 | |a Atmospheric Sciences | |
650 | 4 | |a Remote Sensing/Photogrammetry | |
650 | 0 | 7 | |a Geophysik |0 (DE-588)4020252-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fraktal |0 (DE-588)4123220-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geophysik |0 (DE-588)4020252-5 |D s |
689 | 0 | 1 | |a Fraktal |0 (DE-588)4123220-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Lovejoy, S. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-009-2147-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027850492 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153081496076288 |
---|---|
any_adam_object | |
author | Schertzer, D. |
author_facet | Schertzer, D. |
author_role | aut |
author_sort | Schertzer, D. |
author_variant | d s ds |
building | Verbundindex |
bvnumber | BV042414999 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)905486082 (DE-599)BVBBV042414999 |
dewey-full | 550 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 550 - Earth sciences |
dewey-raw | 550 |
dewey-search | 550 |
dewey-sort | 3550 |
dewey-tens | 550 - Earth sciences |
discipline | Geologie / Paläontologie Physik |
doi_str_mv | 10.1007/978-94-009-2147-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03403nmm a2200517zc 4500</leader><controlfield tag="001">BV042414999</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400921474</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-009-2147-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401074667</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-7466-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-009-2147-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905486082</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042414999</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">550</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schertzer, D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-Linear Variability in Geophysics</subfield><subfield code="b">Scaling and Fractals</subfield><subfield code="c">edited by D. Schertzer, S. Lovejoy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 318 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">consequences of broken symmetry -here parity-is studied. In this model, turbulence is dominated by a hierarchy of helical (corkscrew) structures. The authors stress the unique features of such pseudo-scalar cascades as well as the extreme nature of the resulting (intermittent) fluctuations. Intermittent turbulent cascades was also the theme of a paper by us in which we show that universality classes exist for continuous cascades (in which an infinite number of cascade steps occur over a finite range of scales). This result is the multiplicative analogue of the familiar central limit theorem for the addition of random variables. Finally, an interesting paper by Pasmanter investigates the scaling associated with anomolous diffusion in a chaotic tidal basin model involving a small number of degrees of freedom. Although the statistical literature is replete with techniques for dealing with those random processes characterized by both exponentially decaying (non-scaling) autocorrelations and exponentially decaying probability distributions, there is a real paucity of literature appropriate for geophysical fields exhibiting either scaling over wide ranges (e. g. algebraic autocorrelations) or extreme fluctuations (e. g. algebraic probabilities, divergence of high order statistical moments). In fact, about the only relevant technique that is regularly used -fourier analysis (energy spectra) -permits only an estimate of a single (power law) exponent. If the fields were mono-fractal (characterized by a single fractal dimension) this would be sufficient, however their generally multifractal character calls for the development of new techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical geography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geophysics and Environmental Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geophysics/Geodesy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atmospheric Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remote Sensing/Photogrammetry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geophysik</subfield><subfield code="0">(DE-588)4020252-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geophysik</subfield><subfield code="0">(DE-588)4020252-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lovejoy, S.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-009-2147-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027850492</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042414999 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:56Z |
institution | BVB |
isbn | 9789400921474 9789401074667 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027850492 |
oclc_num | 905486082 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (X, 318 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Springer Netherlands |
record_format | marc |
spelling | Schertzer, D. Verfasser aut Non-Linear Variability in Geophysics Scaling and Fractals edited by D. Schertzer, S. Lovejoy Dordrecht Springer Netherlands 1991 1 Online-Ressource (X, 318 p) txt rdacontent c rdamedia cr rdacarrier consequences of broken symmetry -here parity-is studied. In this model, turbulence is dominated by a hierarchy of helical (corkscrew) structures. The authors stress the unique features of such pseudo-scalar cascades as well as the extreme nature of the resulting (intermittent) fluctuations. Intermittent turbulent cascades was also the theme of a paper by us in which we show that universality classes exist for continuous cascades (in which an infinite number of cascade steps occur over a finite range of scales). This result is the multiplicative analogue of the familiar central limit theorem for the addition of random variables. Finally, an interesting paper by Pasmanter investigates the scaling associated with anomolous diffusion in a chaotic tidal basin model involving a small number of degrees of freedom. Although the statistical literature is replete with techniques for dealing with those random processes characterized by both exponentially decaying (non-scaling) autocorrelations and exponentially decaying probability distributions, there is a real paucity of literature appropriate for geophysical fields exhibiting either scaling over wide ranges (e. g. algebraic autocorrelations) or extreme fluctuations (e. g. algebraic probabilities, divergence of high order statistical moments). In fact, about the only relevant technique that is regularly used -fourier analysis (energy spectra) -permits only an estimate of a single (power law) exponent. If the fields were mono-fractal (characterized by a single fractal dimension) this would be sufficient, however their generally multifractal character calls for the development of new techniques Physics Physical geography Remote sensing Geophysics and Environmental Physics Geophysics/Geodesy Atmospheric Sciences Remote Sensing/Photogrammetry Geophysik (DE-588)4020252-5 gnd rswk-swf Fraktal (DE-588)4123220-3 gnd rswk-swf Geophysik (DE-588)4020252-5 s Fraktal (DE-588)4123220-3 s 1\p DE-604 Lovejoy, S. Sonstige oth https://doi.org/10.1007/978-94-009-2147-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schertzer, D. Non-Linear Variability in Geophysics Scaling and Fractals Physics Physical geography Remote sensing Geophysics and Environmental Physics Geophysics/Geodesy Atmospheric Sciences Remote Sensing/Photogrammetry Geophysik (DE-588)4020252-5 gnd Fraktal (DE-588)4123220-3 gnd |
subject_GND | (DE-588)4020252-5 (DE-588)4123220-3 |
title | Non-Linear Variability in Geophysics Scaling and Fractals |
title_auth | Non-Linear Variability in Geophysics Scaling and Fractals |
title_exact_search | Non-Linear Variability in Geophysics Scaling and Fractals |
title_full | Non-Linear Variability in Geophysics Scaling and Fractals edited by D. Schertzer, S. Lovejoy |
title_fullStr | Non-Linear Variability in Geophysics Scaling and Fractals edited by D. Schertzer, S. Lovejoy |
title_full_unstemmed | Non-Linear Variability in Geophysics Scaling and Fractals edited by D. Schertzer, S. Lovejoy |
title_short | Non-Linear Variability in Geophysics |
title_sort | non linear variability in geophysics scaling and fractals |
title_sub | Scaling and Fractals |
topic | Physics Physical geography Remote sensing Geophysics and Environmental Physics Geophysics/Geodesy Atmospheric Sciences Remote Sensing/Photogrammetry Geophysik (DE-588)4020252-5 gnd Fraktal (DE-588)4123220-3 gnd |
topic_facet | Physics Physical geography Remote sensing Geophysics and Environmental Physics Geophysics/Geodesy Atmospheric Sciences Remote Sensing/Photogrammetry Geophysik Fraktal |
url | https://doi.org/10.1007/978-94-009-2147-4 |
work_keys_str_mv | AT schertzerd nonlinearvariabilityingeophysicsscalingandfractals AT lovejoys nonlinearvariabilityingeophysicsscalingandfractals |