The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2003
|
Schriftenreihe: | Texts and Monographs in Physics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Aimed at graduate physics and chemistry students, this is the first comprehensive monograph covering the concept of the geometric phase in quantum physics from its mathematical foundations to its physical applications and experimental manifestations. It contains all the premises of the adiabatic Berry phase as well as the exact Anandan-Aharonov phase. It discusses quantum systems in a classical time-independent environment (time dependent Hamiltonians) and quantum systems in a changing environment (gauge theory of molecular physics). The mathematical methods used are a combination of differential geometry and the theory of linear operators in Hilbert Space. As a result, the monograph demonstrates how non-trivial gauge theories naturally arise and how the consequences can be experimentally observed. Readers benefit by gaining a deep understanding of the long-ignored gauge theoretic effects of quantum mechanics and how to measure them |
Beschreibung: | 1 Online-Ressource (XXI, 427 p) |
ISBN: | 9783662103333 9783642055041 |
ISSN: | 1864-5879 |
DOI: | 10.1007/978-3-662-10333-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042414538 | ||
003 | DE-604 | ||
005 | 20160127 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783662103333 |c Online |9 978-3-662-10333-3 | ||
020 | |a 9783642055041 |c Print |9 978-3-642-05504-1 | ||
024 | 7 | |a 10.1007/978-3-662-10333-3 |2 doi | |
035 | |a (OCoLC)859007415 | ||
035 | |a (DE-599)BVBBV042414538 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.12 |2 23 | |
084 | |a PHY 000 |2 stub | ||
084 | |a PHY 022f |2 stub | ||
100 | 1 | |a Bohm, Arno |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Geometric Phase in Quantum Systems |b Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics |c by Arno Bohm, Ali Mostafazadeh, Hiroyasu Koizumi, Qian Niu, Joseph Zwanziger |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2003 | |
300 | |a 1 Online-Ressource (XXI, 427 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Texts and Monographs in Physics |x 1864-5879 | |
500 | |a Aimed at graduate physics and chemistry students, this is the first comprehensive monograph covering the concept of the geometric phase in quantum physics from its mathematical foundations to its physical applications and experimental manifestations. It contains all the premises of the adiabatic Berry phase as well as the exact Anandan-Aharonov phase. It discusses quantum systems in a classical time-independent environment (time dependent Hamiltonians) and quantum systems in a changing environment (gauge theory of molecular physics). The mathematical methods used are a combination of differential geometry and the theory of linear operators in Hilbert Space. As a result, the monograph demonstrates how non-trivial gauge theories naturally arise and how the consequences can be experimentally observed. Readers benefit by gaining a deep understanding of the long-ignored gauge theoretic effects of quantum mechanics and how to measure them | ||
650 | 4 | |a Physics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Quantum Information Technology, Spintronics | |
650 | 4 | |a Atomic, Molecular, Optical and Plasma Physics | |
650 | 4 | |a Solid State Physics | |
650 | 4 | |a Spectroscopy and Microscopy | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Berry-Phase |0 (DE-588)4296737-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |D s |
689 | 0 | 1 | |a Berry-Phase |0 (DE-588)4296737-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Mostafazadeh, Ali |e Sonstige |4 oth | |
700 | 1 | |a Koizumi, Hiroyasu |e Sonstige |4 oth | |
700 | 1 | |a Niu, Qian |e Sonstige |4 oth | |
700 | 1 | |a Zwanziger, Joseph |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-10333-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027850031 |
Datensatz im Suchindex
_version_ | 1804153080299651072 |
---|---|
any_adam_object | |
author | Bohm, Arno |
author_facet | Bohm, Arno |
author_role | aut |
author_sort | Bohm, Arno |
author_variant | a b ab |
building | Verbundindex |
bvnumber | BV042414538 |
classification_tum | PHY 000 PHY 022f |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)859007415 (DE-599)BVBBV042414538 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-662-10333-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03097nmm a2200589zc 4500</leader><controlfield tag="001">BV042414538</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160127 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662103333</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-10333-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642055041</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-05504-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-10333-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859007415</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042414538</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 022f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bohm, Arno</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Geometric Phase in Quantum Systems</subfield><subfield code="b">Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics</subfield><subfield code="c">by Arno Bohm, Ali Mostafazadeh, Hiroyasu Koizumi, Qian Niu, Joseph Zwanziger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXI, 427 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts and Monographs in Physics</subfield><subfield code="x">1864-5879</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Aimed at graduate physics and chemistry students, this is the first comprehensive monograph covering the concept of the geometric phase in quantum physics from its mathematical foundations to its physical applications and experimental manifestations. It contains all the premises of the adiabatic Berry phase as well as the exact Anandan-Aharonov phase. It discusses quantum systems in a classical time-independent environment (time dependent Hamiltonians) and quantum systems in a changing environment (gauge theory of molecular physics). The mathematical methods used are a combination of differential geometry and the theory of linear operators in Hilbert Space. As a result, the monograph demonstrates how non-trivial gauge theories naturally arise and how the consequences can be experimentally observed. Readers benefit by gaining a deep understanding of the long-ignored gauge theoretic effects of quantum mechanics and how to measure them</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Information Technology, Spintronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atomic, Molecular, Optical and Plasma Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solid State Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectroscopy and Microscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Berry-Phase</subfield><subfield code="0">(DE-588)4296737-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Berry-Phase</subfield><subfield code="0">(DE-588)4296737-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mostafazadeh, Ali</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koizumi, Hiroyasu</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niu, Qian</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zwanziger, Joseph</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-10333-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027850031</subfield></datafield></record></collection> |
id | DE-604.BV042414538 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:55Z |
institution | BVB |
isbn | 9783662103333 9783642055041 |
issn | 1864-5879 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027850031 |
oclc_num | 859007415 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XXI, 427 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Texts and Monographs in Physics |
spelling | Bohm, Arno Verfasser aut The Geometric Phase in Quantum Systems Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics by Arno Bohm, Ali Mostafazadeh, Hiroyasu Koizumi, Qian Niu, Joseph Zwanziger Berlin, Heidelberg Springer Berlin Heidelberg 2003 1 Online-Ressource (XXI, 427 p) txt rdacontent c rdamedia cr rdacarrier Texts and Monographs in Physics 1864-5879 Aimed at graduate physics and chemistry students, this is the first comprehensive monograph covering the concept of the geometric phase in quantum physics from its mathematical foundations to its physical applications and experimental manifestations. It contains all the premises of the adiabatic Berry phase as well as the exact Anandan-Aharonov phase. It discusses quantum systems in a classical time-independent environment (time dependent Hamiltonians) and quantum systems in a changing environment (gauge theory of molecular physics). The mathematical methods used are a combination of differential geometry and the theory of linear operators in Hilbert Space. As a result, the monograph demonstrates how non-trivial gauge theories naturally arise and how the consequences can be experimentally observed. Readers benefit by gaining a deep understanding of the long-ignored gauge theoretic effects of quantum mechanics and how to measure them Physics Geometry Quantum theory Quantum Physics Quantum Information Technology, Spintronics Atomic, Molecular, Optical and Plasma Physics Solid State Physics Spectroscopy and Microscopy Quantentheorie Berry-Phase (DE-588)4296737-5 gnd rswk-swf Quantenmechanisches System (DE-588)4300046-0 gnd rswk-swf Quantenmechanisches System (DE-588)4300046-0 s Berry-Phase (DE-588)4296737-5 s DE-604 Mostafazadeh, Ali Sonstige oth Koizumi, Hiroyasu Sonstige oth Niu, Qian Sonstige oth Zwanziger, Joseph Sonstige oth https://doi.org/10.1007/978-3-662-10333-3 Verlag Volltext |
spellingShingle | Bohm, Arno The Geometric Phase in Quantum Systems Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics Physics Geometry Quantum theory Quantum Physics Quantum Information Technology, Spintronics Atomic, Molecular, Optical and Plasma Physics Solid State Physics Spectroscopy and Microscopy Quantentheorie Berry-Phase (DE-588)4296737-5 gnd Quantenmechanisches System (DE-588)4300046-0 gnd |
subject_GND | (DE-588)4296737-5 (DE-588)4300046-0 |
title | The Geometric Phase in Quantum Systems Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics |
title_auth | The Geometric Phase in Quantum Systems Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics |
title_exact_search | The Geometric Phase in Quantum Systems Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics |
title_full | The Geometric Phase in Quantum Systems Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics by Arno Bohm, Ali Mostafazadeh, Hiroyasu Koizumi, Qian Niu, Joseph Zwanziger |
title_fullStr | The Geometric Phase in Quantum Systems Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics by Arno Bohm, Ali Mostafazadeh, Hiroyasu Koizumi, Qian Niu, Joseph Zwanziger |
title_full_unstemmed | The Geometric Phase in Quantum Systems Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics by Arno Bohm, Ali Mostafazadeh, Hiroyasu Koizumi, Qian Niu, Joseph Zwanziger |
title_short | The Geometric Phase in Quantum Systems |
title_sort | the geometric phase in quantum systems foundations mathematical concepts and applications in molecular and condensed matter physics |
title_sub | Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics |
topic | Physics Geometry Quantum theory Quantum Physics Quantum Information Technology, Spintronics Atomic, Molecular, Optical and Plasma Physics Solid State Physics Spectroscopy and Microscopy Quantentheorie Berry-Phase (DE-588)4296737-5 gnd Quantenmechanisches System (DE-588)4300046-0 gnd |
topic_facet | Physics Geometry Quantum theory Quantum Physics Quantum Information Technology, Spintronics Atomic, Molecular, Optical and Plasma Physics Solid State Physics Spectroscopy and Microscopy Quantentheorie Berry-Phase Quantenmechanisches System |
url | https://doi.org/10.1007/978-3-662-10333-3 |
work_keys_str_mv | AT bohmarno thegeometricphaseinquantumsystemsfoundationsmathematicalconceptsandapplicationsinmolecularandcondensedmatterphysics AT mostafazadehali thegeometricphaseinquantumsystemsfoundationsmathematicalconceptsandapplicationsinmolecularandcondensedmatterphysics AT koizumihiroyasu thegeometricphaseinquantumsystemsfoundationsmathematicalconceptsandapplicationsinmolecularandcondensedmatterphysics AT niuqian thegeometricphaseinquantumsystemsfoundationsmathematicalconceptsandapplicationsinmolecularandcondensedmatterphysics AT zwanzigerjoseph thegeometricphaseinquantumsystemsfoundationsmathematicalconceptsandapplicationsinmolecularandcondensedmatterphysics |