Symmetries and Singularity Structures: Integrability and Chaos in Nonlinear Dynamical Systems Proceedings of the Workshop, Bharathidasan University, Tiruchirapalli, India, November 29–December 2, 1989
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1990
|
Schriftenreihe: | Research Reports in Physics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Symmetries and singularity structures play important roles in the study of nonlinear dynamical systems. It was Sophus Lie who originally stressed the importance of symmetries and invariance in the study of nonlinear differential equations. How ever, the full potentialities of symmetries had been realized only after the advent of solitons in 1965. It is now a well-accepted fact that associated with the infinite number of integrals of motion of a given soliton system, an infinite number of gep. eralized Lie BAcklund symmetries exist. The associated bi-Hamiltonian struc ture, Kac-Moody, Vrrasoro algebras, and so on, have been increasingly attracting the attention of scientists working in this area. Similarly, in recent times the role of symmetries in analyzing both the classical and quantum integrable and nonintegrable finite dimensional systems has been remarkable. On the other hand, the works of Fuchs, Kovalevskaya, Painleve and coworkers on the singularity structures associated with the solutions of nonlinear differen tial equations have helped to classify first and second order nonlinear ordinary differential equations. The recent work of Ablowitz, Ramani and Segur, con jecturing a connection between soliton systems and Painleve equations that are free from movable critical points, has motivated considerably the search for the connection between integrable dynamical systems with finite degrees of freedom and the Painleve property. Weiss, Tabor and Carnevale have extended these ideas to partial differential equations |
Beschreibung: | 1 Online-Ressource (VIII, 208p. 23 illus) |
ISBN: | 9783642760464 9783540530923 |
ISSN: | 0939-7426 |
DOI: | 10.1007/978-3-642-76046-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042413573 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1990 |||| o||u| ||||||eng d | ||
020 | |a 9783642760464 |c Online |9 978-3-642-76046-4 | ||
020 | |a 9783540530923 |c Print |9 978-3-540-53092-3 | ||
024 | 7 | |a 10.1007/978-3-642-76046-4 |2 doi | |
035 | |a (OCoLC)863812377 | ||
035 | |a (DE-599)BVBBV042413573 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 621 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Lakshmanan, Muthuswamy |e Verfasser |4 aut | |
245 | 1 | 0 | |a Symmetries and Singularity Structures |b Integrability and Chaos in Nonlinear Dynamical Systems Proceedings of the Workshop, Bharathidasan University, Tiruchirapalli, India, November 29–December 2, 1989 |c edited by Muthuswamy Lakshmanan, Muthiah Daniel |
246 | 1 | 3 | |a Proceedings of the Workshop, Bharathidasan University, Tiruchirapalli, India, November 29 - December 2, 1989 |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1990 | |
300 | |a 1 Online-Ressource (VIII, 208p. 23 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Research Reports in Physics |x 0939-7426 | |
500 | |a Symmetries and singularity structures play important roles in the study of nonlinear dynamical systems. It was Sophus Lie who originally stressed the importance of symmetries and invariance in the study of nonlinear differential equations. How ever, the full potentialities of symmetries had been realized only after the advent of solitons in 1965. It is now a well-accepted fact that associated with the infinite number of integrals of motion of a given soliton system, an infinite number of gep. eralized Lie BAcklund symmetries exist. The associated bi-Hamiltonian struc ture, Kac-Moody, Vrrasoro algebras, and so on, have been increasingly attracting the attention of scientists working in this area. Similarly, in recent times the role of symmetries in analyzing both the classical and quantum integrable and nonintegrable finite dimensional systems has been remarkable. On the other hand, the works of Fuchs, Kovalevskaya, Painleve and coworkers on the singularity structures associated with the solutions of nonlinear differen tial equations have helped to classify first and second order nonlinear ordinary differential equations. The recent work of Ablowitz, Ramani and Segur, con jecturing a connection between soliton systems and Painleve equations that are free from movable critical points, has motivated considerably the search for the connection between integrable dynamical systems with finite degrees of freedom and the Painleve property. Weiss, Tabor and Carnevale have extended these ideas to partial differential equations | ||
650 | 4 | |a Physics | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Condensed Matter Physics | |
650 | 0 | 7 | |a Dynamisches System |0 (DE-588)4013396-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares System |0 (DE-588)4042110-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integrables System |0 (DE-588)4114032-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chaos |0 (DE-588)4191419-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symmetrie |0 (DE-588)4058724-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares dynamisches System |0 (DE-588)4126142-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1989 |z Tiruchirapalli |2 gnd-content | |
689 | 0 | 0 | |a Nichtlineares dynamisches System |0 (DE-588)4126142-2 |D s |
689 | 0 | 1 | |a Symmetrie |0 (DE-588)4058724-1 |D s |
689 | 0 | |8 3\p |5 DE-604 | |
689 | 1 | 0 | |a Nichtlineares System |0 (DE-588)4042110-7 |D s |
689 | 1 | |8 4\p |5 DE-604 | |
689 | 2 | 0 | |a Chaos |0 (DE-588)4191419-3 |D s |
689 | 2 | |8 5\p |5 DE-604 | |
689 | 3 | 0 | |a Integrables System |0 (DE-588)4114032-1 |D s |
689 | 3 | |8 6\p |5 DE-604 | |
689 | 4 | 0 | |a Dynamisches System |0 (DE-588)4013396-5 |D s |
689 | 4 | |8 7\p |5 DE-604 | |
700 | 1 | |a Daniel, Muthiah |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-76046-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027849066 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 7\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153078050455552 |
---|---|
any_adam_object | |
author | Lakshmanan, Muthuswamy |
author_facet | Lakshmanan, Muthuswamy |
author_role | aut |
author_sort | Lakshmanan, Muthuswamy |
author_variant | m l ml |
building | Verbundindex |
bvnumber | BV042413573 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863812377 (DE-599)BVBBV042413573 |
dewey-full | 621 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621 |
dewey-search | 621 |
dewey-sort | 3621 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-76046-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04867nmm a2200733zc 4500</leader><controlfield tag="001">BV042413573</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642760464</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-76046-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540530923</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-53092-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-76046-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863812377</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413573</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lakshmanan, Muthuswamy</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symmetries and Singularity Structures</subfield><subfield code="b">Integrability and Chaos in Nonlinear Dynamical Systems Proceedings of the Workshop, Bharathidasan University, Tiruchirapalli, India, November 29–December 2, 1989</subfield><subfield code="c">edited by Muthuswamy Lakshmanan, Muthiah Daniel</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Proceedings of the Workshop, Bharathidasan University, Tiruchirapalli, India, November 29 - December 2, 1989</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 208p. 23 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Research Reports in Physics</subfield><subfield code="x">0939-7426</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Symmetries and singularity structures play important roles in the study of nonlinear dynamical systems. It was Sophus Lie who originally stressed the importance of symmetries and invariance in the study of nonlinear differential equations. How ever, the full potentialities of symmetries had been realized only after the advent of solitons in 1965. It is now a well-accepted fact that associated with the infinite number of integrals of motion of a given soliton system, an infinite number of gep. eralized Lie BAcklund symmetries exist. The associated bi-Hamiltonian struc ture, Kac-Moody, Vrrasoro algebras, and so on, have been increasingly attracting the attention of scientists working in this area. Similarly, in recent times the role of symmetries in analyzing both the classical and quantum integrable and nonintegrable finite dimensional systems has been remarkable. On the other hand, the works of Fuchs, Kovalevskaya, Painleve and coworkers on the singularity structures associated with the solutions of nonlinear differen tial equations have helped to classify first and second order nonlinear ordinary differential equations. The recent work of Ablowitz, Ramani and Segur, con jecturing a connection between soliton systems and Painleve equations that are free from movable critical points, has motivated considerably the search for the connection between integrable dynamical systems with finite degrees of freedom and the Painleve property. Weiss, Tabor and Carnevale have extended these ideas to partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Condensed Matter Physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares System</subfield><subfield code="0">(DE-588)4042110-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaos</subfield><subfield code="0">(DE-588)4191419-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares dynamisches System</subfield><subfield code="0">(DE-588)4126142-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1989</subfield><subfield code="z">Tiruchirapalli</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineares dynamisches System</subfield><subfield code="0">(DE-588)4126142-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineares System</subfield><subfield code="0">(DE-588)4042110-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Chaos</subfield><subfield code="0">(DE-588)4191419-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Daniel, Muthiah</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-76046-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027849066</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift gnd-content 2\p (DE-588)1071861417 Konferenzschrift 1989 Tiruchirapalli gnd-content |
genre_facet | Konferenzschrift Konferenzschrift 1989 Tiruchirapalli |
id | DE-604.BV042413573 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:53Z |
institution | BVB |
isbn | 9783642760464 9783540530923 |
issn | 0939-7426 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027849066 |
oclc_num | 863812377 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (VIII, 208p. 23 illus) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Research Reports in Physics |
spelling | Lakshmanan, Muthuswamy Verfasser aut Symmetries and Singularity Structures Integrability and Chaos in Nonlinear Dynamical Systems Proceedings of the Workshop, Bharathidasan University, Tiruchirapalli, India, November 29–December 2, 1989 edited by Muthuswamy Lakshmanan, Muthiah Daniel Proceedings of the Workshop, Bharathidasan University, Tiruchirapalli, India, November 29 - December 2, 1989 Berlin, Heidelberg Springer Berlin Heidelberg 1990 1 Online-Ressource (VIII, 208p. 23 illus) txt rdacontent c rdamedia cr rdacarrier Research Reports in Physics 0939-7426 Symmetries and singularity structures play important roles in the study of nonlinear dynamical systems. It was Sophus Lie who originally stressed the importance of symmetries and invariance in the study of nonlinear differential equations. How ever, the full potentialities of symmetries had been realized only after the advent of solitons in 1965. It is now a well-accepted fact that associated with the infinite number of integrals of motion of a given soliton system, an infinite number of gep. eralized Lie BAcklund symmetries exist. The associated bi-Hamiltonian struc ture, Kac-Moody, Vrrasoro algebras, and so on, have been increasingly attracting the attention of scientists working in this area. Similarly, in recent times the role of symmetries in analyzing both the classical and quantum integrable and nonintegrable finite dimensional systems has been remarkable. On the other hand, the works of Fuchs, Kovalevskaya, Painleve and coworkers on the singularity structures associated with the solutions of nonlinear differen tial equations have helped to classify first and second order nonlinear ordinary differential equations. The recent work of Ablowitz, Ramani and Segur, con jecturing a connection between soliton systems and Painleve equations that are free from movable critical points, has motivated considerably the search for the connection between integrable dynamical systems with finite degrees of freedom and the Painleve property. Weiss, Tabor and Carnevale have extended these ideas to partial differential equations Physics Statistical Physics, Dynamical Systems and Complexity Condensed Matter Physics Dynamisches System (DE-588)4013396-5 gnd rswk-swf Nichtlineares System (DE-588)4042110-7 gnd rswk-swf Integrables System (DE-588)4114032-1 gnd rswk-swf Chaos (DE-588)4191419-3 gnd rswk-swf Symmetrie (DE-588)4058724-1 gnd rswk-swf Nichtlineares dynamisches System (DE-588)4126142-2 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift gnd-content 2\p (DE-588)1071861417 Konferenzschrift 1989 Tiruchirapalli gnd-content Nichtlineares dynamisches System (DE-588)4126142-2 s Symmetrie (DE-588)4058724-1 s 3\p DE-604 Nichtlineares System (DE-588)4042110-7 s 4\p DE-604 Chaos (DE-588)4191419-3 s 5\p DE-604 Integrables System (DE-588)4114032-1 s 6\p DE-604 Dynamisches System (DE-588)4013396-5 s 7\p DE-604 Daniel, Muthiah Sonstige oth https://doi.org/10.1007/978-3-642-76046-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 7\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lakshmanan, Muthuswamy Symmetries and Singularity Structures Integrability and Chaos in Nonlinear Dynamical Systems Proceedings of the Workshop, Bharathidasan University, Tiruchirapalli, India, November 29–December 2, 1989 Physics Statistical Physics, Dynamical Systems and Complexity Condensed Matter Physics Dynamisches System (DE-588)4013396-5 gnd Nichtlineares System (DE-588)4042110-7 gnd Integrables System (DE-588)4114032-1 gnd Chaos (DE-588)4191419-3 gnd Symmetrie (DE-588)4058724-1 gnd Nichtlineares dynamisches System (DE-588)4126142-2 gnd |
subject_GND | (DE-588)4013396-5 (DE-588)4042110-7 (DE-588)4114032-1 (DE-588)4191419-3 (DE-588)4058724-1 (DE-588)4126142-2 (DE-588)1071861417 |
title | Symmetries and Singularity Structures Integrability and Chaos in Nonlinear Dynamical Systems Proceedings of the Workshop, Bharathidasan University, Tiruchirapalli, India, November 29–December 2, 1989 |
title_alt | Proceedings of the Workshop, Bharathidasan University, Tiruchirapalli, India, November 29 - December 2, 1989 |
title_auth | Symmetries and Singularity Structures Integrability and Chaos in Nonlinear Dynamical Systems Proceedings of the Workshop, Bharathidasan University, Tiruchirapalli, India, November 29–December 2, 1989 |
title_exact_search | Symmetries and Singularity Structures Integrability and Chaos in Nonlinear Dynamical Systems Proceedings of the Workshop, Bharathidasan University, Tiruchirapalli, India, November 29–December 2, 1989 |
title_full | Symmetries and Singularity Structures Integrability and Chaos in Nonlinear Dynamical Systems Proceedings of the Workshop, Bharathidasan University, Tiruchirapalli, India, November 29–December 2, 1989 edited by Muthuswamy Lakshmanan, Muthiah Daniel |
title_fullStr | Symmetries and Singularity Structures Integrability and Chaos in Nonlinear Dynamical Systems Proceedings of the Workshop, Bharathidasan University, Tiruchirapalli, India, November 29–December 2, 1989 edited by Muthuswamy Lakshmanan, Muthiah Daniel |
title_full_unstemmed | Symmetries and Singularity Structures Integrability and Chaos in Nonlinear Dynamical Systems Proceedings of the Workshop, Bharathidasan University, Tiruchirapalli, India, November 29–December 2, 1989 edited by Muthuswamy Lakshmanan, Muthiah Daniel |
title_short | Symmetries and Singularity Structures |
title_sort | symmetries and singularity structures integrability and chaos in nonlinear dynamical systems proceedings of the workshop bharathidasan university tiruchirapalli india november 29 december 2 1989 |
title_sub | Integrability and Chaos in Nonlinear Dynamical Systems Proceedings of the Workshop, Bharathidasan University, Tiruchirapalli, India, November 29–December 2, 1989 |
topic | Physics Statistical Physics, Dynamical Systems and Complexity Condensed Matter Physics Dynamisches System (DE-588)4013396-5 gnd Nichtlineares System (DE-588)4042110-7 gnd Integrables System (DE-588)4114032-1 gnd Chaos (DE-588)4191419-3 gnd Symmetrie (DE-588)4058724-1 gnd Nichtlineares dynamisches System (DE-588)4126142-2 gnd |
topic_facet | Physics Statistical Physics, Dynamical Systems and Complexity Condensed Matter Physics Dynamisches System Nichtlineares System Integrables System Chaos Symmetrie Nichtlineares dynamisches System Konferenzschrift Konferenzschrift 1989 Tiruchirapalli |
url | https://doi.org/10.1007/978-3-642-76046-4 |
work_keys_str_mv | AT lakshmananmuthuswamy symmetriesandsingularitystructuresintegrabilityandchaosinnonlineardynamicalsystemsproceedingsoftheworkshopbharathidasanuniversitytiruchirapalliindianovember29december21989 AT danielmuthiah symmetriesandsingularitystructuresintegrabilityandchaosinnonlineardynamicalsystemsproceedingsoftheworkshopbharathidasanuniversitytiruchirapalliindianovember29december21989 AT lakshmananmuthuswamy proceedingsoftheworkshopbharathidasanuniversitytiruchirapalliindianovember29december21989 AT danielmuthiah proceedingsoftheworkshopbharathidasanuniversitytiruchirapalliindianovember29december21989 |