Asymptotic Approaches in Nonlinear Dynamics: New Trends and Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1998
|
Schriftenreihe: | Springer Series in Synergetics
69 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | How well is Nature simulated by the varied asymptotic models that imaginative scientists have invented? B. Birkhoff [52J This book deals with asymptotic methods in nonlinear dynamics. For the first time a detailed and systematic treatment of new asymptotic methods in combination with the Pade approximant method is presented. Most of the basic results included in this manuscript have not been treated but just mentioned in the literature. Providing a state-of-the-art review of asymptotic applications, this book will prove useful as an introduction to the field for novices as well a reference for specialists. Asymptotic methods of solving mechanical and physical problems have been developed by many authors. For example, we can refer to the excel lent courses by A. Nayfeh [119-122]' M. Van Dyke [154], E.J. Hinch [94J and many others [59, 66, 95, 109, 126, 155, 163, 50d, 59dJ. The main features of the monograph presented are: 1) it is devoted to the basic principles of asymp totics and its applications, and 2) it deals with both traditional approaches (such as regular and singular perturbations, averaging and homogenization, perturbations of the domain and boundary shape) and less widely used, new approaches such as one- and two-point Pade approximants, the distributional approach, and the method of boundary perturbations |
Beschreibung: | 1 Online-Ressource (XI, 310p. 58 illus) |
ISBN: | 9783642720796 9783642720819 |
ISSN: | 0172-7389 |
DOI: | 10.1007/978-3-642-72079-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042413467 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1998 |||| o||u| ||||||eng d | ||
020 | |a 9783642720796 |c Online |9 978-3-642-72079-6 | ||
020 | |a 9783642720819 |c Print |9 978-3-642-72081-9 | ||
024 | 7 | |a 10.1007/978-3-642-72079-6 |2 doi | |
035 | |a (OCoLC)863935382 | ||
035 | |a (DE-599)BVBBV042413467 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 621 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Awrejcewicz, Jan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Asymptotic Approaches in Nonlinear Dynamics |b New Trends and Applications |c by Jan Awrejcewicz, Igor V. Andrianov, Leonid I. Manevitch |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1998 | |
300 | |a 1 Online-Ressource (XI, 310p. 58 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Synergetics |v 69 |x 0172-7389 | |
500 | |a How well is Nature simulated by the varied asymptotic models that imaginative scientists have invented? B. Birkhoff [52J This book deals with asymptotic methods in nonlinear dynamics. For the first time a detailed and systematic treatment of new asymptotic methods in combination with the Pade approximant method is presented. Most of the basic results included in this manuscript have not been treated but just mentioned in the literature. Providing a state-of-the-art review of asymptotic applications, this book will prove useful as an introduction to the field for novices as well a reference for specialists. Asymptotic methods of solving mechanical and physical problems have been developed by many authors. For example, we can refer to the excel lent courses by A. Nayfeh [119-122]' M. Van Dyke [154], E.J. Hinch [94J and many others [59, 66, 95, 109, 126, 155, 163, 50d, 59dJ. The main features of the monograph presented are: 1) it is devoted to the basic principles of asymp totics and its applications, and 2) it deals with both traditional approaches (such as regular and singular perturbations, averaging and homogenization, perturbations of the domain and boundary shape) and less widely used, new approaches such as one- and two-point Pade approximants, the distributional approach, and the method of boundary perturbations | ||
650 | 4 | |a Physics | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Mechanics, applied | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Theoretical and Applied Mechanics | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Nichtlineare Schwingung |0 (DE-588)4042100-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotische Methode |0 (DE-588)4287476-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Schwingung |0 (DE-588)4042100-4 |D s |
689 | 0 | 1 | |a Asymptotische Methode |0 (DE-588)4287476-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Andrianov, Igor V. |e Sonstige |4 oth | |
700 | 1 | |a Manevitch, Leonid I. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-72079-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027848960 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153077756854272 |
---|---|
any_adam_object | |
author | Awrejcewicz, Jan |
author_facet | Awrejcewicz, Jan |
author_role | aut |
author_sort | Awrejcewicz, Jan |
author_variant | j a ja |
building | Verbundindex |
bvnumber | BV042413467 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863935382 (DE-599)BVBBV042413467 |
dewey-full | 621 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621 |
dewey-search | 621 |
dewey-sort | 3621 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-72079-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03555nmm a2200589zcb4500</leader><controlfield tag="001">BV042413467</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642720796</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-72079-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642720819</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-72081-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-72079-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863935382</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413467</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Awrejcewicz, Jan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic Approaches in Nonlinear Dynamics</subfield><subfield code="b">New Trends and Applications</subfield><subfield code="c">by Jan Awrejcewicz, Igor V. Andrianov, Leonid I. Manevitch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 310p. 58 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Synergetics</subfield><subfield code="v">69</subfield><subfield code="x">0172-7389</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">How well is Nature simulated by the varied asymptotic models that imaginative scientists have invented? B. Birkhoff [52J This book deals with asymptotic methods in nonlinear dynamics. For the first time a detailed and systematic treatment of new asymptotic methods in combination with the Pade approximant method is presented. Most of the basic results included in this manuscript have not been treated but just mentioned in the literature. Providing a state-of-the-art review of asymptotic applications, this book will prove useful as an introduction to the field for novices as well a reference for specialists. Asymptotic methods of solving mechanical and physical problems have been developed by many authors. For example, we can refer to the excel lent courses by A. Nayfeh [119-122]' M. Van Dyke [154], E.J. Hinch [94J and many others [59, 66, 95, 109, 126, 155, 163, 50d, 59dJ. The main features of the monograph presented are: 1) it is devoted to the basic principles of asymp totics and its applications, and 2) it deals with both traditional approaches (such as regular and singular perturbations, averaging and homogenization, perturbations of the domain and boundary shape) and less widely used, new approaches such as one- and two-point Pade approximants, the distributional approach, and the method of boundary perturbations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics, applied</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical and Applied Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Schwingung</subfield><subfield code="0">(DE-588)4042100-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Schwingung</subfield><subfield code="0">(DE-588)4042100-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Andrianov, Igor V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manevitch, Leonid I.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-72079-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027848960</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042413467 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:53Z |
institution | BVB |
isbn | 9783642720796 9783642720819 |
issn | 0172-7389 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027848960 |
oclc_num | 863935382 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XI, 310p. 58 illus) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Series in Synergetics |
spelling | Awrejcewicz, Jan Verfasser aut Asymptotic Approaches in Nonlinear Dynamics New Trends and Applications by Jan Awrejcewicz, Igor V. Andrianov, Leonid I. Manevitch Berlin, Heidelberg Springer Berlin Heidelberg 1998 1 Online-Ressource (XI, 310p. 58 illus) txt rdacontent c rdamedia cr rdacarrier Springer Series in Synergetics 69 0172-7389 How well is Nature simulated by the varied asymptotic models that imaginative scientists have invented? B. Birkhoff [52J This book deals with asymptotic methods in nonlinear dynamics. For the first time a detailed and systematic treatment of new asymptotic methods in combination with the Pade approximant method is presented. Most of the basic results included in this manuscript have not been treated but just mentioned in the literature. Providing a state-of-the-art review of asymptotic applications, this book will prove useful as an introduction to the field for novices as well a reference for specialists. Asymptotic methods of solving mechanical and physical problems have been developed by many authors. For example, we can refer to the excel lent courses by A. Nayfeh [119-122]' M. Van Dyke [154], E.J. Hinch [94J and many others [59, 66, 95, 109, 126, 155, 163, 50d, 59dJ. The main features of the monograph presented are: 1) it is devoted to the basic principles of asymp totics and its applications, and 2) it deals with both traditional approaches (such as regular and singular perturbations, averaging and homogenization, perturbations of the domain and boundary shape) and less widely used, new approaches such as one- and two-point Pade approximants, the distributional approach, and the method of boundary perturbations Physics Mathematical physics Mechanics Engineering mathematics Mechanics, applied Statistical Physics, Dynamical Systems and Complexity Mathematical Methods in Physics Numerical and Computational Physics Appl.Mathematics/Computational Methods of Engineering Theoretical and Applied Mechanics Mathematische Physik Nichtlineare Schwingung (DE-588)4042100-4 gnd rswk-swf Asymptotische Methode (DE-588)4287476-2 gnd rswk-swf Nichtlineare Schwingung (DE-588)4042100-4 s Asymptotische Methode (DE-588)4287476-2 s 1\p DE-604 Andrianov, Igor V. Sonstige oth Manevitch, Leonid I. Sonstige oth https://doi.org/10.1007/978-3-642-72079-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Awrejcewicz, Jan Asymptotic Approaches in Nonlinear Dynamics New Trends and Applications Physics Mathematical physics Mechanics Engineering mathematics Mechanics, applied Statistical Physics, Dynamical Systems and Complexity Mathematical Methods in Physics Numerical and Computational Physics Appl.Mathematics/Computational Methods of Engineering Theoretical and Applied Mechanics Mathematische Physik Nichtlineare Schwingung (DE-588)4042100-4 gnd Asymptotische Methode (DE-588)4287476-2 gnd |
subject_GND | (DE-588)4042100-4 (DE-588)4287476-2 |
title | Asymptotic Approaches in Nonlinear Dynamics New Trends and Applications |
title_auth | Asymptotic Approaches in Nonlinear Dynamics New Trends and Applications |
title_exact_search | Asymptotic Approaches in Nonlinear Dynamics New Trends and Applications |
title_full | Asymptotic Approaches in Nonlinear Dynamics New Trends and Applications by Jan Awrejcewicz, Igor V. Andrianov, Leonid I. Manevitch |
title_fullStr | Asymptotic Approaches in Nonlinear Dynamics New Trends and Applications by Jan Awrejcewicz, Igor V. Andrianov, Leonid I. Manevitch |
title_full_unstemmed | Asymptotic Approaches in Nonlinear Dynamics New Trends and Applications by Jan Awrejcewicz, Igor V. Andrianov, Leonid I. Manevitch |
title_short | Asymptotic Approaches in Nonlinear Dynamics |
title_sort | asymptotic approaches in nonlinear dynamics new trends and applications |
title_sub | New Trends and Applications |
topic | Physics Mathematical physics Mechanics Engineering mathematics Mechanics, applied Statistical Physics, Dynamical Systems and Complexity Mathematical Methods in Physics Numerical and Computational Physics Appl.Mathematics/Computational Methods of Engineering Theoretical and Applied Mechanics Mathematische Physik Nichtlineare Schwingung (DE-588)4042100-4 gnd Asymptotische Methode (DE-588)4287476-2 gnd |
topic_facet | Physics Mathematical physics Mechanics Engineering mathematics Mechanics, applied Statistical Physics, Dynamical Systems and Complexity Mathematical Methods in Physics Numerical and Computational Physics Appl.Mathematics/Computational Methods of Engineering Theoretical and Applied Mechanics Mathematische Physik Nichtlineare Schwingung Asymptotische Methode |
url | https://doi.org/10.1007/978-3-642-72079-6 |
work_keys_str_mv | AT awrejcewiczjan asymptoticapproachesinnonlineardynamicsnewtrendsandapplications AT andrianovigorv asymptoticapproachesinnonlineardynamicsnewtrendsandapplications AT manevitchleonidi asymptoticapproachesinnonlineardynamicsnewtrendsandapplications |