Asymptotic Methods in Quantum Mechanics: Application to Atoms, Molecules and Nuclei
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2000
|
Schriftenreihe: | Springer Series in Chemical Physics
64 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Asymptotic Methods in Quantum Mechanics is a detailed discussion of the general properties of the wave functions of many particle systems. Particular emphasis is placed on their asymptotic behaviour, since the outer region of the wave function is most sensitive to external interaction. The analysis of these local properties helps in constructing simple and compact wave functions for complicated systems. It also helps in developing a broad understanding of different aspects of quantum mechanics. As applications, wave functions with correct asymptotic forms are used to systematically generate a large data base for susceptibilities, polarizabilities, interactomic potentials and nuclear densities of many atomic, molecular and nuclear systems |
Beschreibung: | 1 Online-Ressource (XI, 174 p) |
ISBN: | 9783642573170 9783642631375 |
ISSN: | 0172-6218 |
DOI: | 10.1007/978-3-642-57317-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042413262 | ||
003 | DE-604 | ||
005 | 20190912 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s2000 |||| o||u| ||||||eng d | ||
020 | |a 9783642573170 |c Online |9 978-3-642-57317-0 | ||
020 | |a 9783642631375 |c Print |9 978-3-642-63137-5 | ||
024 | 7 | |a 10.1007/978-3-642-57317-0 |2 doi | |
035 | |a (OCoLC)863735882 | ||
035 | |a (DE-599)BVBBV042413262 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.12 |2 23 | |
084 | |a PHY 020f |2 stub | ||
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Patil, Shankaragouda H. |e Verfasser |0 (DE-588)171360176 |4 aut | |
245 | 1 | 0 | |a Asymptotic Methods in Quantum Mechanics |b Application to Atoms, Molecules and Nuclei |c by S. H. Patil, K. T. Tang |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2000 | |
300 | |a 1 Online-Ressource (XI, 174 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Chemical Physics |v 64 |x 0172-6218 | |
500 | |a Asymptotic Methods in Quantum Mechanics is a detailed discussion of the general properties of the wave functions of many particle systems. Particular emphasis is placed on their asymptotic behaviour, since the outer region of the wave function is most sensitive to external interaction. The analysis of these local properties helps in constructing simple and compact wave functions for complicated systems. It also helps in developing a broad understanding of different aspects of quantum mechanics. As applications, wave functions with correct asymptotic forms are used to systematically generate a large data base for susceptibilities, polarizabilities, interactomic potentials and nuclear densities of many atomic, molecular and nuclear systems | ||
650 | 4 | |a Physics | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Atomic, Molecular, Optical and Plasma Physics | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Asymptotische Methode |0 (DE-588)4287476-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotik |0 (DE-588)4126634-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eigenfunktion |0 (DE-588)4151167-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wellenfunktion |0 (DE-588)4189547-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schrödinger-Gleichung |0 (DE-588)4053332-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Schrödinger-Gleichung |0 (DE-588)4053332-3 |D s |
689 | 0 | 1 | |a Eigenfunktion |0 (DE-588)4151167-0 |D s |
689 | 0 | 2 | |a Asymptotik |0 (DE-588)4126634-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 1 | 1 | |a Wellenfunktion |0 (DE-588)4189547-2 |D s |
689 | 1 | 2 | |a Asymptotische Methode |0 (DE-588)4287476-2 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Tang, K. T. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-57317-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027848755 |
Datensatz im Suchindex
_version_ | 1804153077266120704 |
---|---|
any_adam_object | |
author | Patil, Shankaragouda H. |
author_GND | (DE-588)171360176 |
author_facet | Patil, Shankaragouda H. |
author_role | aut |
author_sort | Patil, Shankaragouda H. |
author_variant | s h p sh shp |
building | Verbundindex |
bvnumber | BV042413262 |
classification_tum | PHY 020f PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863735882 (DE-599)BVBBV042413262 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-57317-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03263nmm a2200673zcb4500</leader><controlfield tag="001">BV042413262</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190912 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642573170</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-57317-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642631375</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-63137-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-57317-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863735882</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413262</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 020f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Patil, Shankaragouda H.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)171360176</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic Methods in Quantum Mechanics</subfield><subfield code="b">Application to Atoms, Molecules and Nuclei</subfield><subfield code="c">by S. H. Patil, K. T. Tang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 174 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Chemical Physics</subfield><subfield code="v">64</subfield><subfield code="x">0172-6218</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Asymptotic Methods in Quantum Mechanics is a detailed discussion of the general properties of the wave functions of many particle systems. Particular emphasis is placed on their asymptotic behaviour, since the outer region of the wave function is most sensitive to external interaction. The analysis of these local properties helps in constructing simple and compact wave functions for complicated systems. It also helps in developing a broad understanding of different aspects of quantum mechanics. As applications, wave functions with correct asymptotic forms are used to systematically generate a large data base for susceptibilities, polarizabilities, interactomic potentials and nuclear densities of many atomic, molecular and nuclear systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atomic, Molecular, Optical and Plasma Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eigenfunktion</subfield><subfield code="0">(DE-588)4151167-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellenfunktion</subfield><subfield code="0">(DE-588)4189547-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schrödinger-Gleichung</subfield><subfield code="0">(DE-588)4053332-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Schrödinger-Gleichung</subfield><subfield code="0">(DE-588)4053332-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Eigenfunktion</subfield><subfield code="0">(DE-588)4151167-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Wellenfunktion</subfield><subfield code="0">(DE-588)4189547-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, K. T.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-57317-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027848755</subfield></datafield></record></collection> |
id | DE-604.BV042413262 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:52Z |
institution | BVB |
isbn | 9783642573170 9783642631375 |
issn | 0172-6218 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027848755 |
oclc_num | 863735882 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XI, 174 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Series in Chemical Physics |
spelling | Patil, Shankaragouda H. Verfasser (DE-588)171360176 aut Asymptotic Methods in Quantum Mechanics Application to Atoms, Molecules and Nuclei by S. H. Patil, K. T. Tang Berlin, Heidelberg Springer Berlin Heidelberg 2000 1 Online-Ressource (XI, 174 p) txt rdacontent c rdamedia cr rdacarrier Springer Series in Chemical Physics 64 0172-6218 Asymptotic Methods in Quantum Mechanics is a detailed discussion of the general properties of the wave functions of many particle systems. Particular emphasis is placed on their asymptotic behaviour, since the outer region of the wave function is most sensitive to external interaction. The analysis of these local properties helps in constructing simple and compact wave functions for complicated systems. It also helps in developing a broad understanding of different aspects of quantum mechanics. As applications, wave functions with correct asymptotic forms are used to systematically generate a large data base for susceptibilities, polarizabilities, interactomic potentials and nuclear densities of many atomic, molecular and nuclear systems Physics Quantum theory Mathematical physics Quantum Physics Numerical and Computational Physics Atomic, Molecular, Optical and Plasma Physics Theoretical, Mathematical and Computational Physics Mathematical Methods in Physics Mathematische Physik Quantentheorie Asymptotische Methode (DE-588)4287476-2 gnd rswk-swf Asymptotik (DE-588)4126634-1 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Eigenfunktion (DE-588)4151167-0 gnd rswk-swf Wellenfunktion (DE-588)4189547-2 gnd rswk-swf Schrödinger-Gleichung (DE-588)4053332-3 gnd rswk-swf Schrödinger-Gleichung (DE-588)4053332-3 s Eigenfunktion (DE-588)4151167-0 s Asymptotik (DE-588)4126634-1 s DE-604 Quantenmechanik (DE-588)4047989-4 s Wellenfunktion (DE-588)4189547-2 s Asymptotische Methode (DE-588)4287476-2 s Tang, K. T. Sonstige oth https://doi.org/10.1007/978-3-642-57317-0 Verlag Volltext |
spellingShingle | Patil, Shankaragouda H. Asymptotic Methods in Quantum Mechanics Application to Atoms, Molecules and Nuclei Physics Quantum theory Mathematical physics Quantum Physics Numerical and Computational Physics Atomic, Molecular, Optical and Plasma Physics Theoretical, Mathematical and Computational Physics Mathematical Methods in Physics Mathematische Physik Quantentheorie Asymptotische Methode (DE-588)4287476-2 gnd Asymptotik (DE-588)4126634-1 gnd Quantenmechanik (DE-588)4047989-4 gnd Eigenfunktion (DE-588)4151167-0 gnd Wellenfunktion (DE-588)4189547-2 gnd Schrödinger-Gleichung (DE-588)4053332-3 gnd |
subject_GND | (DE-588)4287476-2 (DE-588)4126634-1 (DE-588)4047989-4 (DE-588)4151167-0 (DE-588)4189547-2 (DE-588)4053332-3 |
title | Asymptotic Methods in Quantum Mechanics Application to Atoms, Molecules and Nuclei |
title_auth | Asymptotic Methods in Quantum Mechanics Application to Atoms, Molecules and Nuclei |
title_exact_search | Asymptotic Methods in Quantum Mechanics Application to Atoms, Molecules and Nuclei |
title_full | Asymptotic Methods in Quantum Mechanics Application to Atoms, Molecules and Nuclei by S. H. Patil, K. T. Tang |
title_fullStr | Asymptotic Methods in Quantum Mechanics Application to Atoms, Molecules and Nuclei by S. H. Patil, K. T. Tang |
title_full_unstemmed | Asymptotic Methods in Quantum Mechanics Application to Atoms, Molecules and Nuclei by S. H. Patil, K. T. Tang |
title_short | Asymptotic Methods in Quantum Mechanics |
title_sort | asymptotic methods in quantum mechanics application to atoms molecules and nuclei |
title_sub | Application to Atoms, Molecules and Nuclei |
topic | Physics Quantum theory Mathematical physics Quantum Physics Numerical and Computational Physics Atomic, Molecular, Optical and Plasma Physics Theoretical, Mathematical and Computational Physics Mathematical Methods in Physics Mathematische Physik Quantentheorie Asymptotische Methode (DE-588)4287476-2 gnd Asymptotik (DE-588)4126634-1 gnd Quantenmechanik (DE-588)4047989-4 gnd Eigenfunktion (DE-588)4151167-0 gnd Wellenfunktion (DE-588)4189547-2 gnd Schrödinger-Gleichung (DE-588)4053332-3 gnd |
topic_facet | Physics Quantum theory Mathematical physics Quantum Physics Numerical and Computational Physics Atomic, Molecular, Optical and Plasma Physics Theoretical, Mathematical and Computational Physics Mathematical Methods in Physics Mathematische Physik Quantentheorie Asymptotische Methode Asymptotik Quantenmechanik Eigenfunktion Wellenfunktion Schrödinger-Gleichung |
url | https://doi.org/10.1007/978-3-642-57317-0 |
work_keys_str_mv | AT patilshankaragoudah asymptoticmethodsinquantummechanicsapplicationtoatomsmoleculesandnuclei AT tangkt asymptoticmethodsinquantummechanicsapplicationtoatomsmoleculesandnuclei |