Introduction to Multidimensional Integrable Equations: The Inverse Spectral Transform in 2+1 Dimensions
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1992
|
Schriftenreihe: | Plenum Monographs in Nonlinear Physics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The soliton represents one ofthe most important ofnonlinear phenomena in modern physics. It constitutes an essentially localizedentity with a set ofremarkable properties. Solitons are found in various areas of physics from gravitation and field theory, plasma physics, and nonlinear optics to solid state physics and hydrodynamics. Nonlinear equations which describe soliton phenomena are ubiquitous. Solitons and the equations which commonly describe them are also of great mathematical interest. Thus, the dis covery in 1967and subsequent development ofthe inversescattering transform method that provides the mathematical structure underlying soliton theory constitutes one of the most important developments in modern theoretical physics. The inversescattering transform method is now established as a very powerful tool in the investigation of nonlinear partial differential equations. The inverse scattering transform method, since its discoverysome two decades ago, has been applied to a great variety of nonlinear equations which arise in diverse fields of physics. These include ordinary differential equations, partial differential equations, integrodifferential, and differential-difference equations. The inverse scattering trans form method has allowed the investigation of these equations in a manner comparable to that of the Fourier method for linear equations |
Beschreibung: | 1 Online-Ressource (X, 292 p) |
ISBN: | 9781489911704 9781489911728 |
DOI: | 10.1007/978-1-4899-1170-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042412512 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1992 |||| o||u| ||||||eng d | ||
020 | |a 9781489911704 |c Online |9 978-1-4899-1170-4 | ||
020 | |a 9781489911728 |c Print |9 978-1-4899-1172-8 | ||
024 | 7 | |a 10.1007/978-1-4899-1170-4 |2 doi | |
035 | |a (OCoLC)860244058 | ||
035 | |a (DE-599)BVBBV042412512 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.1 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Konopelchenko, B. G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to Multidimensional Integrable Equations |b The Inverse Spectral Transform in 2+1 Dimensions |c by B. G. Konopelchenko ; edited by C. Rogers |
264 | 1 | |a Boston, MA |b Springer US |c 1992 | |
300 | |a 1 Online-Ressource (X, 292 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Plenum Monographs in Nonlinear Physics | |
500 | |a The soliton represents one ofthe most important ofnonlinear phenomena in modern physics. It constitutes an essentially localizedentity with a set ofremarkable properties. Solitons are found in various areas of physics from gravitation and field theory, plasma physics, and nonlinear optics to solid state physics and hydrodynamics. Nonlinear equations which describe soliton phenomena are ubiquitous. Solitons and the equations which commonly describe them are also of great mathematical interest. Thus, the dis covery in 1967and subsequent development ofthe inversescattering transform method that provides the mathematical structure underlying soliton theory constitutes one of the most important developments in modern theoretical physics. The inversescattering transform method is now established as a very powerful tool in the investigation of nonlinear partial differential equations. The inverse scattering transform method, since its discoverysome two decades ago, has been applied to a great variety of nonlinear equations which arise in diverse fields of physics. These include ordinary differential equations, partial differential equations, integrodifferential, and differential-difference equations. The inverse scattering trans form method has allowed the investigation of these equations in a manner comparable to that of the Fourier method for linear equations | ||
650 | 4 | |a Physics | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
700 | 1 | |a Rogers, C. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4899-1170-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027848005 |
Datensatz im Suchindex
_version_ | 1804153075414335488 |
---|---|
any_adam_object | |
author | Konopelchenko, B. G. |
author_facet | Konopelchenko, B. G. |
author_role | aut |
author_sort | Konopelchenko, B. G. |
author_variant | b g k bg bgk |
building | Verbundindex |
bvnumber | BV042412512 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)860244058 (DE-599)BVBBV042412512 |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-1-4899-1170-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02737nmm a2200397zc 4500</leader><controlfield tag="001">BV042412512</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781489911704</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4899-1170-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781489911728</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4899-1172-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4899-1170-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)860244058</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042412512</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Konopelchenko, B. G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Multidimensional Integrable Equations</subfield><subfield code="b">The Inverse Spectral Transform in 2+1 Dimensions</subfield><subfield code="c">by B. G. Konopelchenko ; edited by C. Rogers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 292 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Plenum Monographs in Nonlinear Physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The soliton represents one ofthe most important ofnonlinear phenomena in modern physics. It constitutes an essentially localizedentity with a set ofremarkable properties. Solitons are found in various areas of physics from gravitation and field theory, plasma physics, and nonlinear optics to solid state physics and hydrodynamics. Nonlinear equations which describe soliton phenomena are ubiquitous. Solitons and the equations which commonly describe them are also of great mathematical interest. Thus, the dis covery in 1967and subsequent development ofthe inversescattering transform method that provides the mathematical structure underlying soliton theory constitutes one of the most important developments in modern theoretical physics. The inversescattering transform method is now established as a very powerful tool in the investigation of nonlinear partial differential equations. The inverse scattering transform method, since its discoverysome two decades ago, has been applied to a great variety of nonlinear equations which arise in diverse fields of physics. These include ordinary differential equations, partial differential equations, integrodifferential, and differential-difference equations. The inverse scattering trans form method has allowed the investigation of these equations in a manner comparable to that of the Fourier method for linear equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rogers, C.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4899-1170-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027848005</subfield></datafield></record></collection> |
id | DE-604.BV042412512 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:50Z |
institution | BVB |
isbn | 9781489911704 9781489911728 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027848005 |
oclc_num | 860244058 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (X, 292 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Springer US |
record_format | marc |
series2 | Plenum Monographs in Nonlinear Physics |
spelling | Konopelchenko, B. G. Verfasser aut Introduction to Multidimensional Integrable Equations The Inverse Spectral Transform in 2+1 Dimensions by B. G. Konopelchenko ; edited by C. Rogers Boston, MA Springer US 1992 1 Online-Ressource (X, 292 p) txt rdacontent c rdamedia cr rdacarrier Plenum Monographs in Nonlinear Physics The soliton represents one ofthe most important ofnonlinear phenomena in modern physics. It constitutes an essentially localizedentity with a set ofremarkable properties. Solitons are found in various areas of physics from gravitation and field theory, plasma physics, and nonlinear optics to solid state physics and hydrodynamics. Nonlinear equations which describe soliton phenomena are ubiquitous. Solitons and the equations which commonly describe them are also of great mathematical interest. Thus, the dis covery in 1967and subsequent development ofthe inversescattering transform method that provides the mathematical structure underlying soliton theory constitutes one of the most important developments in modern theoretical physics. The inversescattering transform method is now established as a very powerful tool in the investigation of nonlinear partial differential equations. The inverse scattering transform method, since its discoverysome two decades ago, has been applied to a great variety of nonlinear equations which arise in diverse fields of physics. These include ordinary differential equations, partial differential equations, integrodifferential, and differential-difference equations. The inverse scattering trans form method has allowed the investigation of these equations in a manner comparable to that of the Fourier method for linear equations Physics Theoretical, Mathematical and Computational Physics Rogers, C. Sonstige oth https://doi.org/10.1007/978-1-4899-1170-4 Verlag Volltext |
spellingShingle | Konopelchenko, B. G. Introduction to Multidimensional Integrable Equations The Inverse Spectral Transform in 2+1 Dimensions Physics Theoretical, Mathematical and Computational Physics |
title | Introduction to Multidimensional Integrable Equations The Inverse Spectral Transform in 2+1 Dimensions |
title_auth | Introduction to Multidimensional Integrable Equations The Inverse Spectral Transform in 2+1 Dimensions |
title_exact_search | Introduction to Multidimensional Integrable Equations The Inverse Spectral Transform in 2+1 Dimensions |
title_full | Introduction to Multidimensional Integrable Equations The Inverse Spectral Transform in 2+1 Dimensions by B. G. Konopelchenko ; edited by C. Rogers |
title_fullStr | Introduction to Multidimensional Integrable Equations The Inverse Spectral Transform in 2+1 Dimensions by B. G. Konopelchenko ; edited by C. Rogers |
title_full_unstemmed | Introduction to Multidimensional Integrable Equations The Inverse Spectral Transform in 2+1 Dimensions by B. G. Konopelchenko ; edited by C. Rogers |
title_short | Introduction to Multidimensional Integrable Equations |
title_sort | introduction to multidimensional integrable equations the inverse spectral transform in 2 1 dimensions |
title_sub | The Inverse Spectral Transform in 2+1 Dimensions |
topic | Physics Theoretical, Mathematical and Computational Physics |
topic_facet | Physics Theoretical, Mathematical and Computational Physics |
url | https://doi.org/10.1007/978-1-4899-1170-4 |
work_keys_str_mv | AT konopelchenkobg introductiontomultidimensionalintegrableequationstheinversespectraltransformin21dimensions AT rogersc introductiontomultidimensionalintegrableequationstheinversespectraltransformin21dimensions |