Networks of Learning Automata: Techniques for Online Stochastic Optimization
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2004
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Networks of Learning Automata: Techniques for Online Stochastic Optimization is a comprehensive account of learning automata models with emphasis on multiautomata systems. It considers synthesis of complex learning structures from simple building blocks and uses stochastic algorithms for refining probabilities of selecting actions. Mathematical analysis of the behavior of games and feedforward networks is provided. Algorithms considered here can be used for online optimization of systems based on noisy measurements of performance index. Also, algorithms that assure convergence to the global optimum are presented. Parallel operation of automata systems for improving speed of convergence is described. The authors also include extensive discussion of how learning automata solutions can be constructed in a variety of applications |
Beschreibung: | 1 Online-Ressource (XV, 268 p) |
ISBN: | 9781441990525 9781461347750 |
DOI: | 10.1007/978-1-4419-9052-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042410970 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781441990525 |c Online |9 978-1-4419-9052-5 | ||
020 | |a 9781461347750 |c Print |9 978-1-4613-4775-0 | ||
024 | 7 | |a 10.1007/978-1-4419-9052-5 |2 doi | |
035 | |a (OCoLC)725120344 | ||
035 | |a (DE-599)BVBBV042410970 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 621 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Thathachar, M. A. L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Networks of Learning Automata |b Techniques for Online Stochastic Optimization |c by M. A. L. Thathachar, P. S. Sastry |
264 | 1 | |a Boston, MA |b Springer US |c 2004 | |
300 | |a 1 Online-Ressource (XV, 268 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Networks of Learning Automata: Techniques for Online Stochastic Optimization is a comprehensive account of learning automata models with emphasis on multiautomata systems. It considers synthesis of complex learning structures from simple building blocks and uses stochastic algorithms for refining probabilities of selecting actions. Mathematical analysis of the behavior of games and feedforward networks is provided. Algorithms considered here can be used for online optimization of systems based on noisy measurements of performance index. Also, algorithms that assure convergence to the global optimum are presented. Parallel operation of automata systems for improving speed of convergence is described. The authors also include extensive discussion of how learning automata solutions can be constructed in a variety of applications | ||
650 | 4 | |a Physics | |
650 | 4 | |a Computer science | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Translators (Computer programs) | |
650 | 4 | |a Operations research | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Language Translation and Linguistics | |
650 | 4 | |a Operation Research/Decision Theory | |
650 | 4 | |a Artificial Intelligence (incl. Robotics) | |
650 | 4 | |a Computer Science, general | |
650 | 4 | |a Informatik | |
650 | 4 | |a Künstliche Intelligenz | |
700 | 1 | |a Sastry, P. S. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4419-9052-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027846463 |
Datensatz im Suchindex
_version_ | 1804153071775776768 |
---|---|
any_adam_object | |
author | Thathachar, M. A. L. |
author_facet | Thathachar, M. A. L. |
author_role | aut |
author_sort | Thathachar, M. A. L. |
author_variant | m a l t mal malt |
building | Verbundindex |
bvnumber | BV042410970 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)725120344 (DE-599)BVBBV042410970 |
dewey-full | 621 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621 |
dewey-search | 621 |
dewey-sort | 3621 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
doi_str_mv | 10.1007/978-1-4419-9052-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02535nmm a2200505zc 4500</leader><controlfield tag="001">BV042410970</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441990525</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4419-9052-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461347750</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-4775-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4419-9052-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)725120344</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042410970</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thathachar, M. A. L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Networks of Learning Automata</subfield><subfield code="b">Techniques for Online Stochastic Optimization</subfield><subfield code="c">by M. A. L. Thathachar, P. S. Sastry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 268 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Networks of Learning Automata: Techniques for Online Stochastic Optimization is a comprehensive account of learning automata models with emphasis on multiautomata systems. It considers synthesis of complex learning structures from simple building blocks and uses stochastic algorithms for refining probabilities of selecting actions. Mathematical analysis of the behavior of games and feedforward networks is provided. Algorithms considered here can be used for online optimization of systems based on noisy measurements of performance index. Also, algorithms that assure convergence to the global optimum are presented. Parallel operation of automata systems for improving speed of convergence is described. The authors also include extensive discussion of how learning automata solutions can be constructed in a variety of applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Translators (Computer programs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Language Translation and Linguistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operation Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence (incl. Robotics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sastry, P. S.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4419-9052-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027846463</subfield></datafield></record></collection> |
id | DE-604.BV042410970 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:47Z |
institution | BVB |
isbn | 9781441990525 9781461347750 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027846463 |
oclc_num | 725120344 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XV, 268 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer US |
record_format | marc |
spelling | Thathachar, M. A. L. Verfasser aut Networks of Learning Automata Techniques for Online Stochastic Optimization by M. A. L. Thathachar, P. S. Sastry Boston, MA Springer US 2004 1 Online-Ressource (XV, 268 p) txt rdacontent c rdamedia cr rdacarrier Networks of Learning Automata: Techniques for Online Stochastic Optimization is a comprehensive account of learning automata models with emphasis on multiautomata systems. It considers synthesis of complex learning structures from simple building blocks and uses stochastic algorithms for refining probabilities of selecting actions. Mathematical analysis of the behavior of games and feedforward networks is provided. Algorithms considered here can be used for online optimization of systems based on noisy measurements of performance index. Also, algorithms that assure convergence to the global optimum are presented. Parallel operation of automata systems for improving speed of convergence is described. The authors also include extensive discussion of how learning automata solutions can be constructed in a variety of applications Physics Computer science Artificial intelligence Translators (Computer programs) Operations research Statistical Physics, Dynamical Systems and Complexity Language Translation and Linguistics Operation Research/Decision Theory Artificial Intelligence (incl. Robotics) Computer Science, general Informatik Künstliche Intelligenz Sastry, P. S. Sonstige oth https://doi.org/10.1007/978-1-4419-9052-5 Verlag Volltext |
spellingShingle | Thathachar, M. A. L. Networks of Learning Automata Techniques for Online Stochastic Optimization Physics Computer science Artificial intelligence Translators (Computer programs) Operations research Statistical Physics, Dynamical Systems and Complexity Language Translation and Linguistics Operation Research/Decision Theory Artificial Intelligence (incl. Robotics) Computer Science, general Informatik Künstliche Intelligenz |
title | Networks of Learning Automata Techniques for Online Stochastic Optimization |
title_auth | Networks of Learning Automata Techniques for Online Stochastic Optimization |
title_exact_search | Networks of Learning Automata Techniques for Online Stochastic Optimization |
title_full | Networks of Learning Automata Techniques for Online Stochastic Optimization by M. A. L. Thathachar, P. S. Sastry |
title_fullStr | Networks of Learning Automata Techniques for Online Stochastic Optimization by M. A. L. Thathachar, P. S. Sastry |
title_full_unstemmed | Networks of Learning Automata Techniques for Online Stochastic Optimization by M. A. L. Thathachar, P. S. Sastry |
title_short | Networks of Learning Automata |
title_sort | networks of learning automata techniques for online stochastic optimization |
title_sub | Techniques for Online Stochastic Optimization |
topic | Physics Computer science Artificial intelligence Translators (Computer programs) Operations research Statistical Physics, Dynamical Systems and Complexity Language Translation and Linguistics Operation Research/Decision Theory Artificial Intelligence (incl. Robotics) Computer Science, general Informatik Künstliche Intelligenz |
topic_facet | Physics Computer science Artificial intelligence Translators (Computer programs) Operations research Statistical Physics, Dynamical Systems and Complexity Language Translation and Linguistics Operation Research/Decision Theory Artificial Intelligence (incl. Robotics) Computer Science, general Informatik Künstliche Intelligenz |
url | https://doi.org/10.1007/978-1-4419-9052-5 |
work_keys_str_mv | AT thathacharmal networksoflearningautomatatechniquesforonlinestochasticoptimization AT sastryps networksoflearningautomatatechniquesforonlinestochasticoptimization |