Blow-up in nonlinear Sobolev type equations:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
de Gruyter
2011
|
Schriftenreihe: | De Gruyter series in nonlinear analysis and applications
15 |
Schlagworte: | |
Online-Zugang: | FUBA1 Volltext |
Beschreibung: | The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain sufficient conditions for global (in time) solvability, to obtain sufficient conditions for blow-up of solutions at finite time, and to derive upper and lower estimates for the blow-up time. The monograph contains a vast list of references (440 items) and gives an overall view of the contemporary state-of-the-art of the mathematical modeling of various important problems arising in physics. Since the list of references contains many papers which have been published previously only in Russian research journals, it may also serve as a guide to the Russian literature. Alexander B. Al'shin, Maxim O. Korpusov, Alexey G.Sveshnikov, Lomonosov Moscow State University, Russia |
Beschreibung: | 1 Online-Ressource (XII, 648 S.) graph. Darst. |
ISBN: | 9783110255294 |
Internformat
MARC
LEADER | 00000nmm a22000001cb4500 | ||
---|---|---|---|
001 | BV042348239 | ||
003 | DE-604 | ||
005 | 20221214 | ||
007 | cr|uuu---uuuuu | ||
008 | 150212s2011 |||| o||u| ||||||eng d | ||
020 | |a 9783110255294 |9 978-3-11-025529-4 | ||
024 | 7 | |a 10.1515/9783110255294 |2 doi | |
035 | |a (OCoLC)749781836 | ||
035 | |a (DE-599)BVBBV042348239 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-706 |a DE-703 |a DE-1043 |a DE-858 |a DE-19 |a DE-188 | ||
082 | 0 | |a 515/.782 | |
100 | 1 | |a Alʹšin, Aleksandr B. |e Verfasser |0 (DE-588)1017570418 |4 aut | |
245 | 1 | 0 | |a Blow-up in nonlinear Sobolev type equations |c Alexander B. Al'shin ; Maxim O. Korpusov ; Alexey G. Sveshnikov |
264 | 1 | |a Berlin [u.a.] |b de Gruyter |c 2011 | |
300 | |a 1 Online-Ressource (XII, 648 S.) |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter series in nonlinear analysis and applications |v 15 | |
500 | |a The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain sufficient conditions for global (in time) solvability, to obtain sufficient conditions for blow-up of solutions at finite time, and to derive upper and lower estimates for the blow-up time. The monograph contains a vast list of references (440 items) and gives an overall view of the contemporary state-of-the-art of the mathematical modeling of various important problems arising in physics. Since the list of references contains many papers which have been published previously only in Russian research journals, it may also serve as a guide to the Russian literature. Alexander B. Al'shin, Maxim O. Korpusov, Alexey G.Sveshnikov, Lomonosov Moscow State University, Russia | ||
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Initial value problems |x Numerical solutions | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Nonlinear difference equations | |
650 | 0 | 7 | |a Anfangsrandwertproblem |0 (DE-588)4001990-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Blowing up |0 (DE-588)4508027-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pseudoparabolische Differentialgleichung |0 (DE-588)4176155-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Cauchy-Anfangswertproblem |0 (DE-588)4147404-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lösung |g Mathematik |0 (DE-588)4120678-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Pseudoparabolische Differentialgleichung |0 (DE-588)4176155-8 |D s |
689 | 0 | 1 | |a Cauchy-Anfangswertproblem |0 (DE-588)4147404-1 |D s |
689 | 0 | 2 | |a Anfangsrandwertproblem |0 (DE-588)4001990-1 |D s |
689 | 0 | 3 | |a Lösung |g Mathematik |0 (DE-588)4120678-2 |D s |
689 | 0 | 4 | |a Blowing up |0 (DE-588)4508027-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Korpusov, Maksim Olegovič |e Verfasser |0 (DE-588)1017570582 |4 aut | |
700 | 1 | |a Svešnikov, Aleksej G. |d 1924- |e Verfasser |0 (DE-588)1012307123 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-025527-0 |w (DE-604)BV037473332 |
830 | 0 | |a De Gruyter series in nonlinear analysis and applications |v 15 |w (DE-604)BV044970340 |9 15 | |
856 | 4 | 0 | |u http://www.degruyter.com/doi/book/10.1515/9783110255294 |x Verlag |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMN |a ZDB-23-GMA |a ZDB-23-GBA | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q FHA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
940 | 1 | |q ZDB-23-GBA_2000/2014 | |
940 | 1 | |q ZDB-23-GMA_2000/2014 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027784720 | ||
966 | e | |u http://www.degruyter.com/doi/book/10.1515/9783110255294 |l FUBA1 |p ZDB-23-DMN |q ZDB-23-DMN 2011 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804152968167030784 |
---|---|
any_adam_object | |
author | Alʹšin, Aleksandr B. Korpusov, Maksim Olegovič Svešnikov, Aleksej G. 1924- |
author_GND | (DE-588)1017570418 (DE-588)1017570582 (DE-588)1012307123 |
author_facet | Alʹšin, Aleksandr B. Korpusov, Maksim Olegovič Svešnikov, Aleksej G. 1924- |
author_role | aut aut aut |
author_sort | Alʹšin, Aleksandr B. |
author_variant | a b a ab aba m o k mo mok a g s ag ags |
building | Verbundindex |
bvnumber | BV042348239 |
collection | ZDB-23-DGG ZDB-23-DMN ZDB-23-GMA ZDB-23-GBA |
ctrlnum | (OCoLC)749781836 (DE-599)BVBBV042348239 |
dewey-full | 515/.782 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.782 |
dewey-search | 515/.782 |
dewey-sort | 3515 3782 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03925nmm a22006611cb4500</leader><controlfield tag="001">BV042348239</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150212s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110255294</subfield><subfield code="9">978-3-11-025529-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110255294</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)749781836</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042348239</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.782</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alʹšin, Aleksandr B.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1017570418</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Blow-up in nonlinear Sobolev type equations</subfield><subfield code="c">Alexander B. Al'shin ; Maxim O. Korpusov ; Alexey G. Sveshnikov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">de Gruyter</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 648 S.)</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter series in nonlinear analysis and applications</subfield><subfield code="v">15</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain sufficient conditions for global (in time) solvability, to obtain sufficient conditions for blow-up of solutions at finite time, and to derive upper and lower estimates for the blow-up time. The monograph contains a vast list of references (440 items) and gives an overall view of the contemporary state-of-the-art of the mathematical modeling of various important problems arising in physics. Since the list of references contains many papers which have been published previously only in Russian research journals, it may also serve as a guide to the Russian literature. Alexander B. Al'shin, Maxim O. Korpusov, Alexey G.Sveshnikov, Lomonosov Moscow State University, Russia</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Initial value problems</subfield><subfield code="x">Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear difference equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Blowing up</subfield><subfield code="0">(DE-588)4508027-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pseudoparabolische Differentialgleichung</subfield><subfield code="0">(DE-588)4176155-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cauchy-Anfangswertproblem</subfield><subfield code="0">(DE-588)4147404-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4120678-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pseudoparabolische Differentialgleichung</subfield><subfield code="0">(DE-588)4176155-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Cauchy-Anfangswertproblem</subfield><subfield code="0">(DE-588)4147404-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4120678-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Blowing up</subfield><subfield code="0">(DE-588)4508027-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Korpusov, Maksim Olegovič</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1017570582</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Svešnikov, Aleksej G.</subfield><subfield code="d">1924-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1012307123</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-025527-0</subfield><subfield code="w">(DE-604)BV037473332</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter series in nonlinear analysis and applications</subfield><subfield code="v">15</subfield><subfield code="w">(DE-604)BV044970340</subfield><subfield code="9">15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9783110255294</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMN</subfield><subfield code="a">ZDB-23-GMA</subfield><subfield code="a">ZDB-23-GBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GBA_2000/2014</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GMA_2000/2014</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027784720</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9783110255294</subfield><subfield code="l">FUBA1</subfield><subfield code="p">ZDB-23-DMN</subfield><subfield code="q">ZDB-23-DMN 2011</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042348239 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:19:05Z |
institution | BVB |
isbn | 9783110255294 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027784720 |
oclc_num | 749781836 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM DE-188 |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM DE-188 |
physical | 1 Online-Ressource (XII, 648 S.) graph. Darst. |
psigel | ZDB-23-DGG ZDB-23-DMN ZDB-23-GMA ZDB-23-GBA FKE_PDA_DGG FLA_PDA_DGG FHA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG ZDB-23-GBA_2000/2014 ZDB-23-GMA_2000/2014 ZDB-23-DMN ZDB-23-DMN 2011 |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | de Gruyter |
record_format | marc |
series | De Gruyter series in nonlinear analysis and applications |
series2 | De Gruyter series in nonlinear analysis and applications |
spelling | Alʹšin, Aleksandr B. Verfasser (DE-588)1017570418 aut Blow-up in nonlinear Sobolev type equations Alexander B. Al'shin ; Maxim O. Korpusov ; Alexey G. Sveshnikov Berlin [u.a.] de Gruyter 2011 1 Online-Ressource (XII, 648 S.) graph. Darst. txt rdacontent c rdamedia cr rdacarrier De Gruyter series in nonlinear analysis and applications 15 The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain sufficient conditions for global (in time) solvability, to obtain sufficient conditions for blow-up of solutions at finite time, and to derive upper and lower estimates for the blow-up time. The monograph contains a vast list of references (440 items) and gives an overall view of the contemporary state-of-the-art of the mathematical modeling of various important problems arising in physics. Since the list of references contains many papers which have been published previously only in Russian research journals, it may also serve as a guide to the Russian literature. Alexander B. Al'shin, Maxim O. Korpusov, Alexey G.Sveshnikov, Lomonosov Moscow State University, Russia Mathematische Physik Initial value problems Numerical solutions Mathematical physics Nonlinear difference equations Anfangsrandwertproblem (DE-588)4001990-1 gnd rswk-swf Blowing up (DE-588)4508027-6 gnd rswk-swf Pseudoparabolische Differentialgleichung (DE-588)4176155-8 gnd rswk-swf Cauchy-Anfangswertproblem (DE-588)4147404-1 gnd rswk-swf Lösung Mathematik (DE-588)4120678-2 gnd rswk-swf Pseudoparabolische Differentialgleichung (DE-588)4176155-8 s Cauchy-Anfangswertproblem (DE-588)4147404-1 s Anfangsrandwertproblem (DE-588)4001990-1 s Lösung Mathematik (DE-588)4120678-2 s Blowing up (DE-588)4508027-6 s DE-604 Korpusov, Maksim Olegovič Verfasser (DE-588)1017570582 aut Svešnikov, Aleksej G. 1924- Verfasser (DE-588)1012307123 aut Erscheint auch als Druck-Ausgabe 978-3-11-025527-0 (DE-604)BV037473332 De Gruyter series in nonlinear analysis and applications 15 (DE-604)BV044970340 15 http://www.degruyter.com/doi/book/10.1515/9783110255294 Verlag Volltext |
spellingShingle | Alʹšin, Aleksandr B. Korpusov, Maksim Olegovič Svešnikov, Aleksej G. 1924- Blow-up in nonlinear Sobolev type equations De Gruyter series in nonlinear analysis and applications Mathematische Physik Initial value problems Numerical solutions Mathematical physics Nonlinear difference equations Anfangsrandwertproblem (DE-588)4001990-1 gnd Blowing up (DE-588)4508027-6 gnd Pseudoparabolische Differentialgleichung (DE-588)4176155-8 gnd Cauchy-Anfangswertproblem (DE-588)4147404-1 gnd Lösung Mathematik (DE-588)4120678-2 gnd |
subject_GND | (DE-588)4001990-1 (DE-588)4508027-6 (DE-588)4176155-8 (DE-588)4147404-1 (DE-588)4120678-2 |
title | Blow-up in nonlinear Sobolev type equations |
title_auth | Blow-up in nonlinear Sobolev type equations |
title_exact_search | Blow-up in nonlinear Sobolev type equations |
title_full | Blow-up in nonlinear Sobolev type equations Alexander B. Al'shin ; Maxim O. Korpusov ; Alexey G. Sveshnikov |
title_fullStr | Blow-up in nonlinear Sobolev type equations Alexander B. Al'shin ; Maxim O. Korpusov ; Alexey G. Sveshnikov |
title_full_unstemmed | Blow-up in nonlinear Sobolev type equations Alexander B. Al'shin ; Maxim O. Korpusov ; Alexey G. Sveshnikov |
title_short | Blow-up in nonlinear Sobolev type equations |
title_sort | blow up in nonlinear sobolev type equations |
topic | Mathematische Physik Initial value problems Numerical solutions Mathematical physics Nonlinear difference equations Anfangsrandwertproblem (DE-588)4001990-1 gnd Blowing up (DE-588)4508027-6 gnd Pseudoparabolische Differentialgleichung (DE-588)4176155-8 gnd Cauchy-Anfangswertproblem (DE-588)4147404-1 gnd Lösung Mathematik (DE-588)4120678-2 gnd |
topic_facet | Mathematische Physik Initial value problems Numerical solutions Mathematical physics Nonlinear difference equations Anfangsrandwertproblem Blowing up Pseudoparabolische Differentialgleichung Cauchy-Anfangswertproblem Lösung Mathematik |
url | http://www.degruyter.com/doi/book/10.1515/9783110255294 |
volume_link | (DE-604)BV044970340 |
work_keys_str_mv | AT alʹsinaleksandrb blowupinnonlinearsobolevtypeequations AT korpusovmaksimolegovic blowupinnonlinearsobolevtypeequations AT svesnikovaleksejg blowupinnonlinearsobolevtypeequations |