Partial differential equations: a unified Hilbert space approach
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
de Gruyter
2011
|
Schriftenreihe: | de Gruyter expositions in mathematics
55 |
Schlagworte: | |
Online-Zugang: | FUBA1 Volltext |
Beschreibung: | Biographical note: Rainer Picard, Dresden University of Technology, Germany; Des McGhee, University of Strathclyde, Glasgow, Scottland, UK. Main description: This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. Thefocus on a Hilbert space setting is a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations.This global point of view is takenby focussing on the issues involved in determining the appropriate functional analytic setting in which a solution theory can naturally be developed. Applications to many areas of mathematical physics are presented. The book aims to be a largely self-contained. Full proofs to all but the most straightforward results are provided. It is therefore highly suitable as a resource for graduate courses and for researchers, who will find new results for particular evolutionary system from mathematical physics |
Beschreibung: | 1 Online-Ressource (XVIII, 469 S.) |
ISBN: | 1283399938 9781283399937 9783110250268 9783110250275 |
Internformat
MARC
LEADER | 00000nmm a22000001cb4500 | ||
---|---|---|---|
001 | BV042348141 | ||
003 | DE-604 | ||
005 | 20230207 | ||
007 | cr|uuu---uuuuu | ||
008 | 150212s2011 |||| o||u| ||||||eng d | ||
020 | |a 1283399938 |c ebk |9 1-283-39993-8 | ||
020 | |a 9781283399937 |c MyiLibrary |9 978-1-283-39993-7 | ||
020 | |a 9783110250268 |c print |9 978-3-11-025026-8 | ||
020 | |a 9783110250275 |c electronic |9 978-3-11-025027-5 | ||
020 | |z 0001283399911 |9 0001283399911 | ||
024 | 7 | |a 10.1515/9783110250275 |2 doi | |
035 | |a (OCoLC)753970239 | ||
035 | |a (DE-599)BVBBV042348141 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-83 |a DE-1046 |a DE-706 |a DE-703 |a DE-1043 |a DE-858 |a DE-19 |a DE-188 | ||
082 | 0 | |a 515/.733 | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
100 | 1 | |a Picard, Rainer |d 1946- |e Verfasser |0 (DE-588)108135764 |4 aut | |
245 | 1 | 0 | |a Partial differential equations |b a unified Hilbert space approach |c Rainer Picard ; Des McGhee |
264 | 1 | |a Berlin [u.a.] |b de Gruyter |c 2011 | |
300 | |a 1 Online-Ressource (XVIII, 469 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a de Gruyter expositions in mathematics |v 55 | |
500 | |a Biographical note: Rainer Picard, Dresden University of Technology, Germany; Des McGhee, University of Strathclyde, Glasgow, Scottland, UK. | ||
500 | |a Main description: This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. Thefocus on a Hilbert space setting is a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations.This global point of view is takenby focussing on the issues involved in determining the appropriate functional analytic setting in which a solution theory can naturally be developed. Applications to many areas of mathematical physics are presented. The book aims to be a largely self-contained. Full proofs to all but the most straightforward results are provided. It is therefore highly suitable as a resource for graduate courses and for researchers, who will find new results for particular evolutionary system from mathematical physics | ||
650 | 4 | |a Differential equations, Partial | |
650 | 4 | |a Hilbert space | |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hilbert-Raum |0 (DE-588)4159850-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lösung |g Mathematik |0 (DE-588)4120678-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a Lösung |g Mathematik |0 (DE-588)4120678-2 |D s |
689 | 0 | 2 | |a Hilbert-Raum |0 (DE-588)4159850-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a McGhee, Des F. |0 (DE-588)137138474 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-025026-8 |w (DE-604)BV037315151 |
830 | 0 | |a de Gruyter expositions in mathematics |v 55 |w (DE-604)BV044998893 |9 55 | |
856 | 4 | 0 | |u http://www.degruyter.com/doi/book/10.1515/9783110250275 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-EXM |a ZDB-23-DMN |a ZDB-23-DGG |a ZDB-23-GMA |a ZDB-23-GBA | ||
940 | 1 | |n cgwrk-korr | |
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q FHA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
940 | 1 | |q ZDB-23-GBA_2000/2014 | |
940 | 1 | |q ZDB-23-GMA_2000/2014 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027784622 | ||
966 | e | |u http://www.degruyter.com/doi/book/10.1515/9783110250275 |l FUBA1 |p ZDB-23-DMN |q ZDB-23-DMN 2011 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804152968155496449 |
---|---|
any_adam_object | |
author | Picard, Rainer 1946- McGhee, Des F. |
author_GND | (DE-588)108135764 (DE-588)137138474 |
author_facet | Picard, Rainer 1946- McGhee, Des F. |
author_role | aut aut |
author_sort | Picard, Rainer 1946- |
author_variant | r p rp d f m df dfm |
building | Verbundindex |
bvnumber | BV042348141 |
classification_rvk | SK 540 |
collection | ZDB-23-EXM ZDB-23-DMN ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA |
ctrlnum | (OCoLC)753970239 (DE-599)BVBBV042348141 |
dewey-full | 515/.733 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.733 |
dewey-search | 515/.733 |
dewey-sort | 3515 3733 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03823nmm a22006611cb4500</leader><controlfield tag="001">BV042348141</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230207 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150212s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283399938</subfield><subfield code="c">ebk</subfield><subfield code="9">1-283-39993-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283399937</subfield><subfield code="c">MyiLibrary</subfield><subfield code="9">978-1-283-39993-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110250268</subfield><subfield code="c">print</subfield><subfield code="9">978-3-11-025026-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110250275</subfield><subfield code="c">electronic</subfield><subfield code="9">978-3-11-025027-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0001283399911</subfield><subfield code="9">0001283399911</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110250275</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)753970239</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042348141</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.733</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Picard, Rainer</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108135764</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partial differential equations</subfield><subfield code="b">a unified Hilbert space approach</subfield><subfield code="c">Rainer Picard ; Des McGhee</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">de Gruyter</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 469 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">de Gruyter expositions in mathematics</subfield><subfield code="v">55</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Biographical note: Rainer Picard, Dresden University of Technology, Germany; Des McGhee, University of Strathclyde, Glasgow, Scottland, UK.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Main description: This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. Thefocus on a Hilbert space setting is a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations.This global point of view is takenby focussing on the issues involved in determining the appropriate functional analytic setting in which a solution theory can naturally be developed. Applications to many areas of mathematical physics are presented. The book aims to be a largely self-contained. Full proofs to all but the most straightforward results are provided. It is therefore highly suitable as a resource for graduate courses and for researchers, who will find new results for particular evolutionary system from mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert space</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4120678-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4120678-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Hilbert-Raum</subfield><subfield code="0">(DE-588)4159850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McGhee, Des F.</subfield><subfield code="0">(DE-588)137138474</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-025026-8</subfield><subfield code="w">(DE-604)BV037315151</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">de Gruyter expositions in mathematics</subfield><subfield code="v">55</subfield><subfield code="w">(DE-604)BV044998893</subfield><subfield code="9">55</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9783110250275</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-EXM</subfield><subfield code="a">ZDB-23-DMN</subfield><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-GMA</subfield><subfield code="a">ZDB-23-GBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">cgwrk-korr</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GBA_2000/2014</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GMA_2000/2014</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027784622</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9783110250275</subfield><subfield code="l">FUBA1</subfield><subfield code="p">ZDB-23-DMN</subfield><subfield code="q">ZDB-23-DMN 2011</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042348141 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:19:05Z |
institution | BVB |
isbn | 1283399938 9781283399937 9783110250268 9783110250275 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027784622 |
oclc_num | 753970239 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-83 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM DE-188 |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-83 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM DE-188 |
physical | 1 Online-Ressource (XVIII, 469 S.) |
psigel | ZDB-23-EXM ZDB-23-DMN ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA FKE_PDA_DGG FLA_PDA_DGG FHA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG ZDB-23-GBA_2000/2014 ZDB-23-GMA_2000/2014 ZDB-23-DMN ZDB-23-DMN 2011 |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | de Gruyter |
record_format | marc |
series | de Gruyter expositions in mathematics |
series2 | de Gruyter expositions in mathematics |
spelling | Picard, Rainer 1946- Verfasser (DE-588)108135764 aut Partial differential equations a unified Hilbert space approach Rainer Picard ; Des McGhee Berlin [u.a.] de Gruyter 2011 1 Online-Ressource (XVIII, 469 S.) txt rdacontent c rdamedia cr rdacarrier de Gruyter expositions in mathematics 55 Biographical note: Rainer Picard, Dresden University of Technology, Germany; Des McGhee, University of Strathclyde, Glasgow, Scottland, UK. Main description: This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. Thefocus on a Hilbert space setting is a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations.This global point of view is takenby focussing on the issues involved in determining the appropriate functional analytic setting in which a solution theory can naturally be developed. Applications to many areas of mathematical physics are presented. The book aims to be a largely self-contained. Full proofs to all but the most straightforward results are provided. It is therefore highly suitable as a resource for graduate courses and for researchers, who will find new results for particular evolutionary system from mathematical physics Differential equations, Partial Hilbert space Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Hilbert-Raum (DE-588)4159850-7 gnd rswk-swf Lösung Mathematik (DE-588)4120678-2 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s Lösung Mathematik (DE-588)4120678-2 s Hilbert-Raum (DE-588)4159850-7 s DE-604 McGhee, Des F. (DE-588)137138474 aut Erscheint auch als Druck-Ausgabe 978-3-11-025026-8 (DE-604)BV037315151 de Gruyter expositions in mathematics 55 (DE-604)BV044998893 55 http://www.degruyter.com/doi/book/10.1515/9783110250275 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Picard, Rainer 1946- McGhee, Des F. Partial differential equations a unified Hilbert space approach de Gruyter expositions in mathematics Differential equations, Partial Hilbert space Partielle Differentialgleichung (DE-588)4044779-0 gnd Hilbert-Raum (DE-588)4159850-7 gnd Lösung Mathematik (DE-588)4120678-2 gnd |
subject_GND | (DE-588)4044779-0 (DE-588)4159850-7 (DE-588)4120678-2 |
title | Partial differential equations a unified Hilbert space approach |
title_auth | Partial differential equations a unified Hilbert space approach |
title_exact_search | Partial differential equations a unified Hilbert space approach |
title_full | Partial differential equations a unified Hilbert space approach Rainer Picard ; Des McGhee |
title_fullStr | Partial differential equations a unified Hilbert space approach Rainer Picard ; Des McGhee |
title_full_unstemmed | Partial differential equations a unified Hilbert space approach Rainer Picard ; Des McGhee |
title_short | Partial differential equations |
title_sort | partial differential equations a unified hilbert space approach |
title_sub | a unified Hilbert space approach |
topic | Differential equations, Partial Hilbert space Partielle Differentialgleichung (DE-588)4044779-0 gnd Hilbert-Raum (DE-588)4159850-7 gnd Lösung Mathematik (DE-588)4120678-2 gnd |
topic_facet | Differential equations, Partial Hilbert space Partielle Differentialgleichung Hilbert-Raum Lösung Mathematik |
url | http://www.degruyter.com/doi/book/10.1515/9783110250275 |
volume_link | (DE-604)BV044998893 |
work_keys_str_mv | AT picardrainer partialdifferentialequationsaunifiedhilbertspaceapproach AT mcgheedesf partialdifferentialequationsaunifiedhilbertspaceapproach |