Attractors of evolution equations:
Saved in:
Bibliographic Details
Main Author: Babin, A. V., (Anatoliĭ Vladimirovich) (Author)
Format: Electronic eBook
Language:English
Published: Amsterdam North-Holland 1992
Series:Studies in mathematics and its applications v. 25
Subjects:
Online Access:Volltext
Item Description:Translation of: Attraktory ėvoli͡ut͡sionnykh uravneniĭ
Problems, ideas and notions from the theory of finite-dimensional dynamical systems have penetrated deeply into the theory of infinite-dimensional systems and partial differential equations. From the standpoint of the theory of the dynamical systems, many scientists have investigated the evolutionary equations of mathematical physics. Such equations include the Navier-Stokes system, magneto-hydrodynamics equations, reaction-diffusion equations, and damped semilinear wave equations. Due to the recent efforts of many mathematicians, it has been established that the attractor of the Navier-Stokes system, which attracts (in an appropriate functional space) as t - & infin; all trajectories of this system, is a compact finite-dimensional (in the sense of Hausdorff) set. Upper and lower bounds (in terms of the Reynolds number) for the dimension of the attractor were found. These results for the Navier-Stokes system have stimulated investigations of attractors of other equations of mathematical physics. For certain problems, in particular for reaction-diffusion systems and nonlinear damped wave equations, mathematicians have established the existence of the attractors and their basic properties; furthermore, they proved that, as t - + & infin;, an infinite-dimensional dynamics described by these equations and systems uniformly approaches a finite-dimensional dynamics on the attractor U, which, in the case being considered, is the union of smooth manifolds. This book is devoted to these and several other topics related to the behaviour as t - & infin; of solutions for evolutionary equations
Includes bibliographical references (p. 505-526) and index
Physical Description:1 Online-Ressource (x, 532 p.)
ISBN:9780444890047
0444890041

There is no print copy available.

Interlibrary loan Place Request Caution: Not in THWS collection! Get full text