Symmetric Banach manifolds and Jordan C*-algebras:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
North-Holland
1985
|
Schriftenreihe: | North-Holland mathematics studies
104 Notas de matemática (Rio de Janeiro, Brazil) no. 96 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book links two of the most active research areas in present day mathematics, namely Infinite Dimensional Holomorphy (on Banach spaces) and the theory of Operator Algebras (C*-Algebras and their non-associative generalizations, the Jordan C*-Algebras). It organizes in a systematic way a wealth of recent results which are so far only accessible in research journals and contains additional original contributions. Using Banach Lie groups and Banach Lie algebras, a theory of transformation groups on infinite dimensional manifolds is presented which covers many important examples such as Grassmann manifolds and the unit balls of operator algebras. The theory also has potential importance for mathematical physics by providing foundations for the construction of infinite dimensional curved phase spaces in quantum field theory Includes bibliographical references (p. 425-434) and indexes |
Beschreibung: | 1 Online-Ressource (xii, 444 p.) |
ISBN: | 9780444876515 0444876510 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317753 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1985 |||| o||u| ||||||eng d | ||
020 | |a 9780444876515 |9 978-0-444-87651-5 | ||
020 | |a 0444876510 |9 0-444-87651-0 | ||
035 | |a (ZDB-33-EBS)ocn316568546 | ||
035 | |a (OCoLC)316568546 | ||
035 | |a (DE-599)BVBBV042317753 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 510 |2 22 | |
082 | 0 | |a 515.7/32 |2 22 | |
100 | 1 | |a Upmeier, Harald |e Verfasser |4 aut | |
245 | 1 | 0 | |a Symmetric Banach manifolds and Jordan C*-algebras |c Harald Upmeier |
264 | 1 | |a Amsterdam |b North-Holland |c 1985 | |
300 | |a 1 Online-Ressource (xii, 444 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a North-Holland mathematics studies |v 104 | |
490 | 0 | |a Notas de matemática (Rio de Janeiro, Brazil) |v no. 96 | |
500 | |a This book links two of the most active research areas in present day mathematics, namely Infinite Dimensional Holomorphy (on Banach spaces) and the theory of Operator Algebras (C*-Algebras and their non-associative generalizations, the Jordan C*-Algebras). It organizes in a systematic way a wealth of recent results which are so far only accessible in research journals and contains additional original contributions. Using Banach Lie groups and Banach Lie algebras, a theory of transformation groups on infinite dimensional manifolds is presented which covers many important examples such as Grassmann manifolds and the unit balls of operator algebras. The theory also has potential importance for mathematical physics by providing foundations for the construction of infinite dimensional curved phase spaces in quantum field theory | ||
500 | |a Includes bibliographical references (p. 425-434) and indexes | ||
650 | 4 | |a Jordan, Algèbres de | |
650 | 4 | |a C*-algèbres | |
650 | 4 | |a Banach, Variétés de | |
650 | 7 | |a Jordan-algebra's |2 gtt | |
650 | 7 | |a Banachruimten |2 gtt | |
650 | 7 | |a C*-algebra's |2 gtt | |
650 | 7 | |a Algebras De Banach |2 larpcal | |
650 | 7 | |a Banach manifolds |2 fast | |
650 | 7 | |a C*-algebras |2 fast | |
650 | 7 | |a Jordan algebras |2 fast | |
650 | 4 | |a Banach manifolds | |
650 | 4 | |a Jordan algebras | |
650 | 4 | |a C*-algebras | |
650 | 0 | 7 | |a Symmetrische Banach-Mannigfaltigkeit |0 (DE-588)4184203-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Banach-Mannigfaltigkeit |0 (DE-588)4143973-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a C-Stern-Algebra |0 (DE-588)4136693-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Jordan-Algebra |0 (DE-588)4162770-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Symmetrische Banach-Mannigfaltigkeit |0 (DE-588)4184203-0 |D s |
689 | 0 | 1 | |a C-Stern-Algebra |0 (DE-588)4136693-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Symmetrische Banach-Mannigfaltigkeit |0 (DE-588)4184203-0 |D s |
689 | 1 | 1 | |a Jordan-Algebra |0 (DE-588)4162770-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Banach-Mannigfaltigkeit |0 (DE-588)4143973-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444876515 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754744 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152914552291328 |
---|---|
any_adam_object | |
author | Upmeier, Harald |
author_facet | Upmeier, Harald |
author_role | aut |
author_sort | Upmeier, Harald |
author_variant | h u hu |
building | Verbundindex |
bvnumber | BV042317753 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316568546 (OCoLC)316568546 (DE-599)BVBBV042317753 |
dewey-full | 510 515.7/32 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics 515 - Analysis |
dewey-raw | 510 515.7/32 |
dewey-search | 510 515.7/32 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03533nmm a2200733zcb4500</leader><controlfield tag="001">BV042317753</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444876515</subfield><subfield code="9">978-0-444-87651-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444876510</subfield><subfield code="9">0-444-87651-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316568546</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316568546</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317753</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7/32</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Upmeier, Harald</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symmetric Banach manifolds and Jordan C*-algebras</subfield><subfield code="c">Harald Upmeier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North-Holland</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 444 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">North-Holland mathematics studies</subfield><subfield code="v">104</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Notas de matemática (Rio de Janeiro, Brazil)</subfield><subfield code="v">no. 96</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book links two of the most active research areas in present day mathematics, namely Infinite Dimensional Holomorphy (on Banach spaces) and the theory of Operator Algebras (C*-Algebras and their non-associative generalizations, the Jordan C*-Algebras). It organizes in a systematic way a wealth of recent results which are so far only accessible in research journals and contains additional original contributions. Using Banach Lie groups and Banach Lie algebras, a theory of transformation groups on infinite dimensional manifolds is presented which covers many important examples such as Grassmann manifolds and the unit balls of operator algebras. The theory also has potential importance for mathematical physics by providing foundations for the construction of infinite dimensional curved phase spaces in quantum field theory</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 425-434) and indexes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jordan, Algèbres de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">C*-algèbres</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach, Variétés de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Jordan-algebra's</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Banachruimten</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">C*-algebra's</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebras De Banach</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Banach manifolds</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">C*-algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Jordan algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jordan algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">C*-algebras</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrische Banach-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4184203-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4143973-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">C-Stern-Algebra</subfield><subfield code="0">(DE-588)4136693-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Jordan-Algebra</subfield><subfield code="0">(DE-588)4162770-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Symmetrische Banach-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4184203-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">C-Stern-Algebra</subfield><subfield code="0">(DE-588)4136693-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Symmetrische Banach-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4184203-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Jordan-Algebra</subfield><subfield code="0">(DE-588)4162770-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Banach-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4143973-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444876515</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754744</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317753 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:17Z |
institution | BVB |
isbn | 9780444876515 0444876510 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754744 |
oclc_num | 316568546 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xii, 444 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | North-Holland |
record_format | marc |
series2 | North-Holland mathematics studies Notas de matemática (Rio de Janeiro, Brazil) |
spelling | Upmeier, Harald Verfasser aut Symmetric Banach manifolds and Jordan C*-algebras Harald Upmeier Amsterdam North-Holland 1985 1 Online-Ressource (xii, 444 p.) txt rdacontent c rdamedia cr rdacarrier North-Holland mathematics studies 104 Notas de matemática (Rio de Janeiro, Brazil) no. 96 This book links two of the most active research areas in present day mathematics, namely Infinite Dimensional Holomorphy (on Banach spaces) and the theory of Operator Algebras (C*-Algebras and their non-associative generalizations, the Jordan C*-Algebras). It organizes in a systematic way a wealth of recent results which are so far only accessible in research journals and contains additional original contributions. Using Banach Lie groups and Banach Lie algebras, a theory of transformation groups on infinite dimensional manifolds is presented which covers many important examples such as Grassmann manifolds and the unit balls of operator algebras. The theory also has potential importance for mathematical physics by providing foundations for the construction of infinite dimensional curved phase spaces in quantum field theory Includes bibliographical references (p. 425-434) and indexes Jordan, Algèbres de C*-algèbres Banach, Variétés de Jordan-algebra's gtt Banachruimten gtt C*-algebra's gtt Algebras De Banach larpcal Banach manifolds fast C*-algebras fast Jordan algebras fast Banach manifolds Jordan algebras C*-algebras Symmetrische Banach-Mannigfaltigkeit (DE-588)4184203-0 gnd rswk-swf Banach-Mannigfaltigkeit (DE-588)4143973-9 gnd rswk-swf C-Stern-Algebra (DE-588)4136693-1 gnd rswk-swf Jordan-Algebra (DE-588)4162770-2 gnd rswk-swf Symmetrische Banach-Mannigfaltigkeit (DE-588)4184203-0 s C-Stern-Algebra (DE-588)4136693-1 s 1\p DE-604 Jordan-Algebra (DE-588)4162770-2 s 2\p DE-604 Banach-Mannigfaltigkeit (DE-588)4143973-9 s 3\p DE-604 http://www.sciencedirect.com/science/book/9780444876515 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Upmeier, Harald Symmetric Banach manifolds and Jordan C*-algebras Jordan, Algèbres de C*-algèbres Banach, Variétés de Jordan-algebra's gtt Banachruimten gtt C*-algebra's gtt Algebras De Banach larpcal Banach manifolds fast C*-algebras fast Jordan algebras fast Banach manifolds Jordan algebras C*-algebras Symmetrische Banach-Mannigfaltigkeit (DE-588)4184203-0 gnd Banach-Mannigfaltigkeit (DE-588)4143973-9 gnd C-Stern-Algebra (DE-588)4136693-1 gnd Jordan-Algebra (DE-588)4162770-2 gnd |
subject_GND | (DE-588)4184203-0 (DE-588)4143973-9 (DE-588)4136693-1 (DE-588)4162770-2 |
title | Symmetric Banach manifolds and Jordan C*-algebras |
title_auth | Symmetric Banach manifolds and Jordan C*-algebras |
title_exact_search | Symmetric Banach manifolds and Jordan C*-algebras |
title_full | Symmetric Banach manifolds and Jordan C*-algebras Harald Upmeier |
title_fullStr | Symmetric Banach manifolds and Jordan C*-algebras Harald Upmeier |
title_full_unstemmed | Symmetric Banach manifolds and Jordan C*-algebras Harald Upmeier |
title_short | Symmetric Banach manifolds and Jordan C*-algebras |
title_sort | symmetric banach manifolds and jordan c algebras |
topic | Jordan, Algèbres de C*-algèbres Banach, Variétés de Jordan-algebra's gtt Banachruimten gtt C*-algebra's gtt Algebras De Banach larpcal Banach manifolds fast C*-algebras fast Jordan algebras fast Banach manifolds Jordan algebras C*-algebras Symmetrische Banach-Mannigfaltigkeit (DE-588)4184203-0 gnd Banach-Mannigfaltigkeit (DE-588)4143973-9 gnd C-Stern-Algebra (DE-588)4136693-1 gnd Jordan-Algebra (DE-588)4162770-2 gnd |
topic_facet | Jordan, Algèbres de C*-algèbres Banach, Variétés de Jordan-algebra's Banachruimten C*-algebra's Algebras De Banach Banach manifolds C*-algebras Jordan algebras Symmetrische Banach-Mannigfaltigkeit Banach-Mannigfaltigkeit C-Stern-Algebra Jordan-Algebra |
url | http://www.sciencedirect.com/science/book/9780444876515 |
work_keys_str_mv | AT upmeierharald symmetricbanachmanifoldsandjordancalgebras |