Dimension and extensions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
North Holland
1993
|
Schriftenreihe: | North-Holland mathematical library
v. 48 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Two types of seemingly unrelated extension problems are discussed in this book. Their common focus is a long-standing problem of Johannes de Groot, the main conjecture of which was recently resolved. As is true of many important conjectures, a wide range of mathematical investigations had developed, which have been grouped into the two extension problems. The first concerns the extending of spaces, the second concerns extending the theory of dimension by replacing the empty space with other spaces. The problem of de Groot concerned compactifications of spaces by means of an adjunction of a set of minimal dimension. This minimal dimension was called the compactness deficiency of a space. Early success in 1942 lead de Groot to invent a generalization of the dimension function, called the compactness degree of a space, with the hope that this function would internally characterize the compactness deficiency which is a topological invariant of a space that is externally defined by means of compact extensions of a space. From this, the two extension problems were spawned. With the classical dimension theory as a model, the inductive, covering and basic aspects of the dimension functions are investigated in this volume, resulting in extensions of the sum, subspace and decomposition theorems and theorems about mappings into spheres. Presented are examples, counterexamples, open problems and solutions of the original and modified compactification problems Includes bibliographical references (p. 315-326) and index |
Beschreibung: | 1 Online-Ressource (xii, 331 p.) |
ISBN: | 9780444897404 0444897402 9780080887616 0080887619 1281778966 9781281778963 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317580 | ||
003 | DE-604 | ||
005 | 20180131 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1993 |||| o||u| ||||||eng d | ||
020 | |a 9780444897404 |9 978-0-444-89740-4 | ||
020 | |a 0444897402 |9 0-444-89740-2 | ||
020 | |a 9780080887616 |c electronic bk. |9 978-0-08-088761-6 | ||
020 | |a 0080887619 |c electronic bk. |9 0-08-088761-9 | ||
020 | |a 1281778966 |9 1-281-77896-6 | ||
020 | |a 9781281778963 |9 978-1-281-77896-3 | ||
035 | |a (ZDB-33-EBS)ocn316566674 | ||
035 | |a (OCoLC)316566674 | ||
035 | |a (DE-599)BVBBV042317580 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 514/.32 |2 22 | |
100 | 1 | |a Aarts, J. M. |d 1938-2018 |e Verfasser |0 (DE-588)1077023162 |4 aut | |
245 | 1 | 0 | |a Dimension and extensions |c J.M. Aarts, T. Nishiura |
264 | 1 | |a Amsterdam |b North Holland |c 1993 | |
300 | |a 1 Online-Ressource (xii, 331 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a North-Holland mathematical library |v v. 48 | |
500 | |a Two types of seemingly unrelated extension problems are discussed in this book. Their common focus is a long-standing problem of Johannes de Groot, the main conjecture of which was recently resolved. As is true of many important conjectures, a wide range of mathematical investigations had developed, which have been grouped into the two extension problems. The first concerns the extending of spaces, the second concerns extending the theory of dimension by replacing the empty space with other spaces. The problem of de Groot concerned compactifications of spaces by means of an adjunction of a set of minimal dimension. This minimal dimension was called the compactness deficiency of a space. Early success in 1942 lead de Groot to invent a generalization of the dimension function, called the compactness degree of a space, with the hope that this function would internally characterize the compactness deficiency which is a topological invariant of a space that is externally defined by means of compact extensions of a space. From this, the two extension problems were spawned. With the classical dimension theory as a model, the inductive, covering and basic aspects of the dimension functions are investigated in this volume, resulting in extensions of the sum, subspace and decomposition theorems and theorems about mappings into spheres. Presented are examples, counterexamples, open problems and solutions of the original and modified compactification problems | ||
500 | |a Includes bibliographical references (p. 315-326) and index | ||
650 | 4 | |a Topological spaces | |
650 | 7 | |a Topologia |2 larpcal | |
650 | 7 | |a Compactifications |2 fast | |
650 | 7 | |a Dimension theory (Topology) |2 fast | |
650 | 7 | |a Mappings (Mathematics) |2 fast | |
650 | 7 | |a MATHEMATICS / Topology |2 bisacsh | |
650 | 4 | |a Dimension theory (Topology) | |
650 | 4 | |a Mappings (Mathematics) | |
650 | 4 | |a Compactifications | |
650 | 0 | 7 | |a Dimensionstheorie |0 (DE-588)4149935-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kompaktifizierung |0 (DE-588)4164859-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kompaktifizierung |0 (DE-588)4164859-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Dimensionstheorie |0 (DE-588)4149935-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Nishiura, Togo |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444897404 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754571 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152914163269632 |
---|---|
any_adam_object | |
author | Aarts, J. M. 1938-2018 |
author_GND | (DE-588)1077023162 |
author_facet | Aarts, J. M. 1938-2018 |
author_role | aut |
author_sort | Aarts, J. M. 1938-2018 |
author_variant | j m a jm jma |
building | Verbundindex |
bvnumber | BV042317580 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn316566674 (OCoLC)316566674 (DE-599)BVBBV042317580 |
dewey-full | 514/.32 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.32 |
dewey-search | 514/.32 |
dewey-sort | 3514 232 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03782nmm a2200637zcb4500</leader><controlfield tag="001">BV042317580</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180131 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444897404</subfield><subfield code="9">978-0-444-89740-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444897402</subfield><subfield code="9">0-444-89740-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080887616</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-088761-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080887619</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-088761-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281778966</subfield><subfield code="9">1-281-77896-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281778963</subfield><subfield code="9">978-1-281-77896-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn316566674</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316566674</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317580</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.32</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aarts, J. M.</subfield><subfield code="d">1938-2018</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1077023162</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dimension and extensions</subfield><subfield code="c">J.M. Aarts, T. Nishiura</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">North Holland</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 331 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">North-Holland mathematical library</subfield><subfield code="v">v. 48</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Two types of seemingly unrelated extension problems are discussed in this book. Their common focus is a long-standing problem of Johannes de Groot, the main conjecture of which was recently resolved. As is true of many important conjectures, a wide range of mathematical investigations had developed, which have been grouped into the two extension problems. The first concerns the extending of spaces, the second concerns extending the theory of dimension by replacing the empty space with other spaces. The problem of de Groot concerned compactifications of spaces by means of an adjunction of a set of minimal dimension. This minimal dimension was called the compactness deficiency of a space. Early success in 1942 lead de Groot to invent a generalization of the dimension function, called the compactness degree of a space, with the hope that this function would internally characterize the compactness deficiency which is a topological invariant of a space that is externally defined by means of compact extensions of a space. From this, the two extension problems were spawned. With the classical dimension theory as a model, the inductive, covering and basic aspects of the dimension functions are investigated in this volume, resulting in extensions of the sum, subspace and decomposition theorems and theorems about mappings into spheres. Presented are examples, counterexamples, open problems and solutions of the original and modified compactification problems</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 315-326) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topologia</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Compactifications</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dimension theory (Topology)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mappings (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dimension theory (Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mappings (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compactifications</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimensionstheorie</subfield><subfield code="0">(DE-588)4149935-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kompaktifizierung</subfield><subfield code="0">(DE-588)4164859-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kompaktifizierung</subfield><subfield code="0">(DE-588)4164859-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Dimensionstheorie</subfield><subfield code="0">(DE-588)4149935-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nishiura, Togo</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444897404</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754571</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317580 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:17Z |
institution | BVB |
isbn | 9780444897404 0444897402 9780080887616 0080887619 1281778966 9781281778963 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754571 |
oclc_num | 316566674 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xii, 331 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | North Holland |
record_format | marc |
series2 | North-Holland mathematical library |
spelling | Aarts, J. M. 1938-2018 Verfasser (DE-588)1077023162 aut Dimension and extensions J.M. Aarts, T. Nishiura Amsterdam North Holland 1993 1 Online-Ressource (xii, 331 p.) txt rdacontent c rdamedia cr rdacarrier North-Holland mathematical library v. 48 Two types of seemingly unrelated extension problems are discussed in this book. Their common focus is a long-standing problem of Johannes de Groot, the main conjecture of which was recently resolved. As is true of many important conjectures, a wide range of mathematical investigations had developed, which have been grouped into the two extension problems. The first concerns the extending of spaces, the second concerns extending the theory of dimension by replacing the empty space with other spaces. The problem of de Groot concerned compactifications of spaces by means of an adjunction of a set of minimal dimension. This minimal dimension was called the compactness deficiency of a space. Early success in 1942 lead de Groot to invent a generalization of the dimension function, called the compactness degree of a space, with the hope that this function would internally characterize the compactness deficiency which is a topological invariant of a space that is externally defined by means of compact extensions of a space. From this, the two extension problems were spawned. With the classical dimension theory as a model, the inductive, covering and basic aspects of the dimension functions are investigated in this volume, resulting in extensions of the sum, subspace and decomposition theorems and theorems about mappings into spheres. Presented are examples, counterexamples, open problems and solutions of the original and modified compactification problems Includes bibliographical references (p. 315-326) and index Topological spaces Topologia larpcal Compactifications fast Dimension theory (Topology) fast Mappings (Mathematics) fast MATHEMATICS / Topology bisacsh Dimension theory (Topology) Mappings (Mathematics) Compactifications Dimensionstheorie (DE-588)4149935-9 gnd rswk-swf Kompaktifizierung (DE-588)4164859-6 gnd rswk-swf Kompaktifizierung (DE-588)4164859-6 s 1\p DE-604 Dimensionstheorie (DE-588)4149935-9 s 2\p DE-604 Nishiura, Togo Sonstige oth http://www.sciencedirect.com/science/book/9780444897404 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Aarts, J. M. 1938-2018 Dimension and extensions Topological spaces Topologia larpcal Compactifications fast Dimension theory (Topology) fast Mappings (Mathematics) fast MATHEMATICS / Topology bisacsh Dimension theory (Topology) Mappings (Mathematics) Compactifications Dimensionstheorie (DE-588)4149935-9 gnd Kompaktifizierung (DE-588)4164859-6 gnd |
subject_GND | (DE-588)4149935-9 (DE-588)4164859-6 |
title | Dimension and extensions |
title_auth | Dimension and extensions |
title_exact_search | Dimension and extensions |
title_full | Dimension and extensions J.M. Aarts, T. Nishiura |
title_fullStr | Dimension and extensions J.M. Aarts, T. Nishiura |
title_full_unstemmed | Dimension and extensions J.M. Aarts, T. Nishiura |
title_short | Dimension and extensions |
title_sort | dimension and extensions |
topic | Topological spaces Topologia larpcal Compactifications fast Dimension theory (Topology) fast Mappings (Mathematics) fast MATHEMATICS / Topology bisacsh Dimension theory (Topology) Mappings (Mathematics) Compactifications Dimensionstheorie (DE-588)4149935-9 gnd Kompaktifizierung (DE-588)4164859-6 gnd |
topic_facet | Topological spaces Topologia Compactifications Dimension theory (Topology) Mappings (Mathematics) MATHEMATICS / Topology Dimensionstheorie Kompaktifizierung |
url | http://www.sciencedirect.com/science/book/9780444897404 |
work_keys_str_mv | AT aartsjm dimensionandextensions AT nishiuratogo dimensionandextensions |