Manifold theory: an introduction for mathematical physicists
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Chichester
E. Horwood
2002
|
Ausgabe: | Corrected edition |
Schriftenreihe: | Mathematics and its applications (Chichester, England : 1988)
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Includes bibliographical references (pages [409]-411) and index This account of basic manifold theory and global analysis, based on senior undergraduate and post-graduate courses at Glasgow University for students and researchers in theoretical physics, has been proven over many years. The treatment is rigorous yet less condensed than in books written primarily for pure mathematicians. Prerequisites include knowledge of basic linear algebra and topology. Topology is included in two appendices because many courses on mathematics for physics students do not include this subject. Provides a comprehensive account of basic manifold theory for post-graduate studentsIntroduces the basic theory of differential geometry to students in theoretical physics and mathematicsContains more than 130 exercises, with helpful hints and solutions |
Beschreibung: | 1 Online-Ressource (423 pages) |
ISBN: | 9780857099631 0857099639 1898563845 9781898563846 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042317194 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780857099631 |c electronic bk. |9 978-0-85709-963-1 | ||
020 | |a 0857099639 |c electronic bk. |9 0-85709-963-9 | ||
020 | |a 1898563845 |9 1-898563-84-5 | ||
020 | |a 9781898563846 |9 978-1-898563-84-6 | ||
035 | |a (OCoLC)869282059 | ||
035 | |a (DE-599)BVBBV042317194 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 514.3 |2 22 | |
100 | 1 | |a Martin, Daniel |e Verfasser |4 aut | |
245 | 1 | 0 | |a Manifold theory |b an introduction for mathematical physicists |c Daniel Martin |
250 | |a Corrected edition | ||
264 | 1 | |a Chichester |b E. Horwood |c 2002 | |
300 | |a 1 Online-Ressource (423 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and its applications (Chichester, England : 1988) | |
500 | |a Includes bibliographical references (pages [409]-411) and index | ||
500 | |a This account of basic manifold theory and global analysis, based on senior undergraduate and post-graduate courses at Glasgow University for students and researchers in theoretical physics, has been proven over many years. The treatment is rigorous yet less condensed than in books written primarily for pure mathematicians. Prerequisites include knowledge of basic linear algebra and topology. Topology is included in two appendices because many courses on mathematics for physics students do not include this subject. Provides a comprehensive account of basic manifold theory for post-graduate studentsIntroduces the basic theory of differential geometry to students in theoretical physics and mathematicsContains more than 130 exercises, with helpful hints and solutions | ||
650 | 7 | |a Mannigfaltigkeit |2 swd | |
650 | 7 | |a Global analysis (Mathematics) |2 fast | |
650 | 7 | |a Manifolds (Mathematics) |2 fast | |
650 | 7 | |a MATHEMATICS / Topology |2 bisacsh | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9781898563846 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754185 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152913361108992 |
---|---|
any_adam_object | |
author | Martin, Daniel |
author_facet | Martin, Daniel |
author_role | aut |
author_sort | Martin, Daniel |
author_variant | d m dm |
building | Verbundindex |
bvnumber | BV042317194 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (OCoLC)869282059 (DE-599)BVBBV042317194 |
dewey-full | 514.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.3 |
dewey-search | 514.3 |
dewey-sort | 3514.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | Corrected edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02616nmm a2200517zc 4500</leader><controlfield tag="001">BV042317194</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780857099631</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-85709-963-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0857099639</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-85709-963-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1898563845</subfield><subfield code="9">1-898563-84-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781898563846</subfield><subfield code="9">978-1-898563-84-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869282059</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317194</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Martin, Daniel</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Manifold theory</subfield><subfield code="b">an introduction for mathematical physicists</subfield><subfield code="c">Daniel Martin</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Corrected edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester</subfield><subfield code="b">E. Horwood</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (423 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and its applications (Chichester, England : 1988)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages [409]-411) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This account of basic manifold theory and global analysis, based on senior undergraduate and post-graduate courses at Glasgow University for students and researchers in theoretical physics, has been proven over many years. The treatment is rigorous yet less condensed than in books written primarily for pure mathematicians. Prerequisites include knowledge of basic linear algebra and topology. Topology is included in two appendices because many courses on mathematics for physics students do not include this subject. Provides a comprehensive account of basic manifold theory for post-graduate studentsIntroduces the basic theory of differential geometry to students in theoretical physics and mathematicsContains more than 130 exercises, with helpful hints and solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Global analysis (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9781898563846</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754185</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317194 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:16Z |
institution | BVB |
isbn | 9780857099631 0857099639 1898563845 9781898563846 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754185 |
oclc_num | 869282059 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (423 pages) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | E. Horwood |
record_format | marc |
series2 | Mathematics and its applications (Chichester, England : 1988) |
spelling | Martin, Daniel Verfasser aut Manifold theory an introduction for mathematical physicists Daniel Martin Corrected edition Chichester E. Horwood 2002 1 Online-Ressource (423 pages) txt rdacontent c rdamedia cr rdacarrier Mathematics and its applications (Chichester, England : 1988) Includes bibliographical references (pages [409]-411) and index This account of basic manifold theory and global analysis, based on senior undergraduate and post-graduate courses at Glasgow University for students and researchers in theoretical physics, has been proven over many years. The treatment is rigorous yet less condensed than in books written primarily for pure mathematicians. Prerequisites include knowledge of basic linear algebra and topology. Topology is included in two appendices because many courses on mathematics for physics students do not include this subject. Provides a comprehensive account of basic manifold theory for post-graduate studentsIntroduces the basic theory of differential geometry to students in theoretical physics and mathematicsContains more than 130 exercises, with helpful hints and solutions Mannigfaltigkeit swd Global analysis (Mathematics) fast Manifolds (Mathematics) fast MATHEMATICS / Topology bisacsh Manifolds (Mathematics) Global analysis (Mathematics) Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 s 1\p DE-604 http://www.sciencedirect.com/science/book/9781898563846 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Martin, Daniel Manifold theory an introduction for mathematical physicists Mannigfaltigkeit swd Global analysis (Mathematics) fast Manifolds (Mathematics) fast MATHEMATICS / Topology bisacsh Manifolds (Mathematics) Global analysis (Mathematics) Mannigfaltigkeit (DE-588)4037379-4 gnd |
subject_GND | (DE-588)4037379-4 |
title | Manifold theory an introduction for mathematical physicists |
title_auth | Manifold theory an introduction for mathematical physicists |
title_exact_search | Manifold theory an introduction for mathematical physicists |
title_full | Manifold theory an introduction for mathematical physicists Daniel Martin |
title_fullStr | Manifold theory an introduction for mathematical physicists Daniel Martin |
title_full_unstemmed | Manifold theory an introduction for mathematical physicists Daniel Martin |
title_short | Manifold theory |
title_sort | manifold theory an introduction for mathematical physicists |
title_sub | an introduction for mathematical physicists |
topic | Mannigfaltigkeit swd Global analysis (Mathematics) fast Manifolds (Mathematics) fast MATHEMATICS / Topology bisacsh Manifolds (Mathematics) Global analysis (Mathematics) Mannigfaltigkeit (DE-588)4037379-4 gnd |
topic_facet | Mannigfaltigkeit Global analysis (Mathematics) Manifolds (Mathematics) MATHEMATICS / Topology |
url | http://www.sciencedirect.com/science/book/9781898563846 |
work_keys_str_mv | AT martindaniel manifoldtheoryanintroductionformathematicalphysicists |