Principles of real analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston
Harcourt Brace Jovanovich
1990, ©1989
|
Ausgabe: | 2nd ed |
Schlagworte: | |
Online-Zugang: | FAW01 Volltext |
Beschreibung: | Includes bibliographical references and index This major textbook on real analysis is now available in a corrected and slightly amended reprint. It covers the basic theory of integration in a clear, well-organized manner using an imaginative and highly practical synthesis of the 'Daniell method' and the measure-theoretic approach. It is the ideal text for senior undergraduate and first-year graduate courses in real analysis, assuming student familiarity with advanced calculus and basic algebraic concepts |
Beschreibung: | 1 Online-Ressource (xii, 295 pages) |
ISBN: | 0120502550 9780120502554 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042312428 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1990 |||| o||u| ||||||eng d | ||
020 | |a 0120502550 |9 0-12-050255-0 | ||
020 | |a 9780120502554 |c alk. paper |9 978-0-12-050255-4 | ||
035 | |a (OCoLC)755118132 | ||
035 | |a (DE-599)BVBBV042312428 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 515 |2 20 | |
100 | 1 | |a Aliprantis, Charalambos D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Principles of real analysis |c Charalambos D. Aliprantis and Owen Burkinshaw |
250 | |a 2nd ed | ||
264 | 1 | |a Boston |b Harcourt Brace Jovanovich |c 1990, ©1989 | |
300 | |a 1 Online-Ressource (xii, 295 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
500 | |a This major textbook on real analysis is now available in a corrected and slightly amended reprint. It covers the basic theory of integration in a clear, well-organized manner using an imaginative and highly practical synthesis of the 'Daniell method' and the measure-theoretic approach. It is the ideal text for senior undergraduate and first-year graduate courses in real analysis, assuming student familiarity with advanced calculus and basic algebraic concepts | ||
650 | 4 | |a Calculus | |
650 | 7 | |a Functions of real variables |2 fast | |
650 | 7 | |a Mathematical analysis |2 fast | |
650 | 4 | |a Mathematical analysis | |
650 | 4 | |a Functions of real variables | |
650 | 0 | 7 | |a Integrationstheorie |0 (DE-588)4138369-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reelle Analysis |0 (DE-588)4627581-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maßtheorie |0 (DE-588)4074626-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4143389-0 |a Aufgabensammlung |2 gnd-content | |
689 | 0 | 0 | |a Maßtheorie |0 (DE-588)4074626-4 |D s |
689 | 0 | |8 3\p |5 DE-604 | |
689 | 1 | 0 | |a Integrationstheorie |0 (DE-588)4138369-2 |D s |
689 | 1 | |8 4\p |5 DE-604 | |
689 | 2 | 0 | |a Reelle Analysis |0 (DE-588)4627581-2 |D s |
689 | 2 | |8 5\p |5 DE-604 | |
700 | 1 | |a Burkinshaw, Owen |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780120502554 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-027749419 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://www.sciencedirect.com/science/book/9780120502554 |l FAW01 |p ZDB-33-ESD |q FAW_PDA_ESD |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804152903196213248 |
---|---|
any_adam_object | |
author | Aliprantis, Charalambos D. |
author_facet | Aliprantis, Charalambos D. |
author_role | aut |
author_sort | Aliprantis, Charalambos D. |
author_variant | c d a cd cda |
building | Verbundindex |
bvnumber | BV042312428 |
collection | ZDB-33-ESD |
ctrlnum | (OCoLC)755118132 (DE-599)BVBBV042312428 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2nd ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02927nmm a2200613zc 4500</leader><controlfield tag="001">BV042312428</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1990 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0120502550</subfield><subfield code="9">0-12-050255-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780120502554</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-0-12-050255-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)755118132</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042312428</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">20</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aliprantis, Charalambos D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of real analysis</subfield><subfield code="c">Charalambos D. Aliprantis and Owen Burkinshaw</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston</subfield><subfield code="b">Harcourt Brace Jovanovich</subfield><subfield code="c">1990, ©1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 295 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This major textbook on real analysis is now available in a corrected and slightly amended reprint. It covers the basic theory of integration in a clear, well-organized manner using an imaginative and highly practical synthesis of the 'Daniell method' and the measure-theoretic approach. It is the ideal text for senior undergraduate and first-year graduate courses in real analysis, assuming student familiarity with advanced calculus and basic algebraic concepts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functions of real variables</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of real variables</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrationstheorie</subfield><subfield code="0">(DE-588)4138369-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reelle Analysis</subfield><subfield code="0">(DE-588)4627581-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4143389-0</subfield><subfield code="a">Aufgabensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Integrationstheorie</subfield><subfield code="0">(DE-588)4138369-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Reelle Analysis</subfield><subfield code="0">(DE-588)4627581-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Burkinshaw, Owen</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780120502554</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027749419</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.sciencedirect.com/science/book/9780120502554</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-33-ESD</subfield><subfield code="q">FAW_PDA_ESD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4143389-0 Aufgabensammlung gnd-content |
genre_facet | Einführung Aufgabensammlung |
id | DE-604.BV042312428 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:06Z |
institution | BVB |
isbn | 0120502550 9780120502554 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027749419 |
oclc_num | 755118132 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xii, 295 pages) |
psigel | ZDB-33-ESD ZDB-33-ESD FAW_PDA_ESD |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Harcourt Brace Jovanovich |
record_format | marc |
spelling | Aliprantis, Charalambos D. Verfasser aut Principles of real analysis Charalambos D. Aliprantis and Owen Burkinshaw 2nd ed Boston Harcourt Brace Jovanovich 1990, ©1989 1 Online-Ressource (xii, 295 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index This major textbook on real analysis is now available in a corrected and slightly amended reprint. It covers the basic theory of integration in a clear, well-organized manner using an imaginative and highly practical synthesis of the 'Daniell method' and the measure-theoretic approach. It is the ideal text for senior undergraduate and first-year graduate courses in real analysis, assuming student familiarity with advanced calculus and basic algebraic concepts Calculus Functions of real variables fast Mathematical analysis fast Mathematical analysis Functions of real variables Integrationstheorie (DE-588)4138369-2 gnd rswk-swf Reelle Analysis (DE-588)4627581-2 gnd rswk-swf Maßtheorie (DE-588)4074626-4 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4143389-0 Aufgabensammlung gnd-content Maßtheorie (DE-588)4074626-4 s 3\p DE-604 Integrationstheorie (DE-588)4138369-2 s 4\p DE-604 Reelle Analysis (DE-588)4627581-2 s 5\p DE-604 Burkinshaw, Owen Sonstige oth http://www.sciencedirect.com/science/book/9780120502554 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Aliprantis, Charalambos D. Principles of real analysis Calculus Functions of real variables fast Mathematical analysis fast Mathematical analysis Functions of real variables Integrationstheorie (DE-588)4138369-2 gnd Reelle Analysis (DE-588)4627581-2 gnd Maßtheorie (DE-588)4074626-4 gnd |
subject_GND | (DE-588)4138369-2 (DE-588)4627581-2 (DE-588)4074626-4 (DE-588)4151278-9 (DE-588)4143389-0 |
title | Principles of real analysis |
title_auth | Principles of real analysis |
title_exact_search | Principles of real analysis |
title_full | Principles of real analysis Charalambos D. Aliprantis and Owen Burkinshaw |
title_fullStr | Principles of real analysis Charalambos D. Aliprantis and Owen Burkinshaw |
title_full_unstemmed | Principles of real analysis Charalambos D. Aliprantis and Owen Burkinshaw |
title_short | Principles of real analysis |
title_sort | principles of real analysis |
topic | Calculus Functions of real variables fast Mathematical analysis fast Mathematical analysis Functions of real variables Integrationstheorie (DE-588)4138369-2 gnd Reelle Analysis (DE-588)4627581-2 gnd Maßtheorie (DE-588)4074626-4 gnd |
topic_facet | Calculus Functions of real variables Mathematical analysis Integrationstheorie Reelle Analysis Maßtheorie Einführung Aufgabensammlung |
url | http://www.sciencedirect.com/science/book/9780120502554 |
work_keys_str_mv | AT aliprantischaralambosd principlesofrealanalysis AT burkinshawowen principlesofrealanalysis |