Fractal dimensions for Poincaré recurrences:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier
2006
|
Schriftenreihe: | Monograph series on nonlinear science and complexity
v. 2 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is devoted to an important branch of the dynamical systems theory : the study of the fine (fractal) structure of Poincare recurrences -instants of time when the system almost repeats its initial state. The authors were able to write an entirely self-contained text including many insights and examples, as well as providing complete details of proofs. The only prerequisites are a basic knowledge of analysis and topology. Thus this book can serve as a graduate text or self-study guide for courses in applied mathematics or nonlinear dynamics (in the natural sciences). Moreover, the book can be used by specialists in applied nonlinear dynamics following the way in the book. The authors applied the mathematical theory developed in the book to two important problems: distribution of Poincare recurrences for nonpurely chaotic Hamiltonian systems and indication of synchronization regimes in coupled chaotic individual systems. * Portions of the book were published in an article that won the title "month's new hot paper in the field of Mathematics" in May 2004 * Rigorous mathematical theory is combined with important physical applications * Presents rules for immediate action to study mathematical models of real systems * Contains standard theorems of dynamical systems theory Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (xi, 245 p.) |
ISBN: | 9780444521897 0444521895 0080462391 9780080462394 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042311050 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s2006 |||| o||u| ||||||eng d | ||
020 | |a 9780444521897 |9 978-0-444-52189-7 | ||
020 | |a 0444521895 |9 0-444-52189-5 | ||
020 | |a 0080462391 |c electronic bk. |9 0-08-046239-1 | ||
020 | |a 9780080462394 |c electronic bk. |9 978-0-08-046239-4 | ||
035 | |a (OCoLC)162131367 | ||
035 | |a (DE-599)BVBBV042311050 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 514.742 |2 22 | |
100 | 1 | |a Afraĭmovich, V. S., (Valentin Senderovich) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fractal dimensions for Poincaré recurrences |c V. Afraimovich, E. Ugalde and J. Urías |
264 | 1 | |a Amsterdam |b Elsevier |c 2006 | |
300 | |a 1 Online-Ressource (xi, 245 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Monograph series on nonlinear science and complexity |v v. 2 | |
500 | |a This book is devoted to an important branch of the dynamical systems theory : the study of the fine (fractal) structure of Poincare recurrences -instants of time when the system almost repeats its initial state. The authors were able to write an entirely self-contained text including many insights and examples, as well as providing complete details of proofs. The only prerequisites are a basic knowledge of analysis and topology. Thus this book can serve as a graduate text or self-study guide for courses in applied mathematics or nonlinear dynamics (in the natural sciences). Moreover, the book can be used by specialists in applied nonlinear dynamics following the way in the book. The authors applied the mathematical theory developed in the book to two important problems: distribution of Poincare recurrences for nonpurely chaotic Hamiltonian systems and indication of synchronization regimes in coupled chaotic individual systems. * Portions of the book were published in an article that won the title "month's new hot paper in the field of Mathematics" in May 2004 * Rigorous mathematical theory is combined with important physical applications * Presents rules for immediate action to study mathematical models of real systems * Contains standard theorems of dynamical systems theory | ||
500 | |a Includes bibliographical references and index | ||
650 | 7 | |a MATHEMATICS / Topology |2 bisacsh | |
650 | 7 | |a Fractals |2 fast | |
650 | 7 | |a Poincaré series |2 fast | |
650 | 4 | |a Fractals | |
650 | 4 | |a Poincaré series | |
650 | 0 | 7 | |a Poincaré-Reihe |0 (DE-588)4174967-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fraktal |0 (DE-588)4123220-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fraktal |0 (DE-588)4123220-3 |D s |
689 | 0 | 1 | |a Poincaré-Reihe |0 (DE-588)4174967-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Ugalde, E. |e Sonstige |4 oth | |
700 | 1 | |a Urías, J. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444521897 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027748042 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152900461527040 |
---|---|
any_adam_object | |
author | Afraĭmovich, V. S., (Valentin Senderovich) |
author_facet | Afraĭmovich, V. S., (Valentin Senderovich) |
author_role | aut |
author_sort | Afraĭmovich, V. S., (Valentin Senderovich) |
author_variant | v s v s a vsvs vsvsa |
building | Verbundindex |
bvnumber | BV042311050 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (OCoLC)162131367 (DE-599)BVBBV042311050 |
dewey-full | 514.742 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.742 |
dewey-search | 514.742 |
dewey-sort | 3514.742 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03214nmm a2200541zcb4500</leader><controlfield tag="001">BV042311050</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s2006 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444521897</subfield><subfield code="9">978-0-444-52189-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444521895</subfield><subfield code="9">0-444-52189-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080462391</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-046239-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080462394</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-046239-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162131367</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042311050</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.742</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Afraĭmovich, V. S., (Valentin Senderovich)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fractal dimensions for Poincaré recurrences</subfield><subfield code="c">V. Afraimovich, E. Ugalde and J. Urías</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 245 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Monograph series on nonlinear science and complexity</subfield><subfield code="v">v. 2</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is devoted to an important branch of the dynamical systems theory : the study of the fine (fractal) structure of Poincare recurrences -instants of time when the system almost repeats its initial state. The authors were able to write an entirely self-contained text including many insights and examples, as well as providing complete details of proofs. The only prerequisites are a basic knowledge of analysis and topology. Thus this book can serve as a graduate text or self-study guide for courses in applied mathematics or nonlinear dynamics (in the natural sciences). Moreover, the book can be used by specialists in applied nonlinear dynamics following the way in the book. The authors applied the mathematical theory developed in the book to two important problems: distribution of Poincare recurrences for nonpurely chaotic Hamiltonian systems and indication of synchronization regimes in coupled chaotic individual systems. * Portions of the book were published in an article that won the title "month's new hot paper in the field of Mathematics" in May 2004 * Rigorous mathematical theory is combined with important physical applications * Presents rules for immediate action to study mathematical models of real systems * Contains standard theorems of dynamical systems theory</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fractals</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Poincaré series</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Poincaré series</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Poincaré-Reihe</subfield><subfield code="0">(DE-588)4174967-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Poincaré-Reihe</subfield><subfield code="0">(DE-588)4174967-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ugalde, E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Urías, J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444521897</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027748042</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042311050 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:03Z |
institution | BVB |
isbn | 9780444521897 0444521895 0080462391 9780080462394 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027748042 |
oclc_num | 162131367 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (xi, 245 p.) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Elsevier |
record_format | marc |
series2 | Monograph series on nonlinear science and complexity |
spelling | Afraĭmovich, V. S., (Valentin Senderovich) Verfasser aut Fractal dimensions for Poincaré recurrences V. Afraimovich, E. Ugalde and J. Urías Amsterdam Elsevier 2006 1 Online-Ressource (xi, 245 p.) txt rdacontent c rdamedia cr rdacarrier Monograph series on nonlinear science and complexity v. 2 This book is devoted to an important branch of the dynamical systems theory : the study of the fine (fractal) structure of Poincare recurrences -instants of time when the system almost repeats its initial state. The authors were able to write an entirely self-contained text including many insights and examples, as well as providing complete details of proofs. The only prerequisites are a basic knowledge of analysis and topology. Thus this book can serve as a graduate text or self-study guide for courses in applied mathematics or nonlinear dynamics (in the natural sciences). Moreover, the book can be used by specialists in applied nonlinear dynamics following the way in the book. The authors applied the mathematical theory developed in the book to two important problems: distribution of Poincare recurrences for nonpurely chaotic Hamiltonian systems and indication of synchronization regimes in coupled chaotic individual systems. * Portions of the book were published in an article that won the title "month's new hot paper in the field of Mathematics" in May 2004 * Rigorous mathematical theory is combined with important physical applications * Presents rules for immediate action to study mathematical models of real systems * Contains standard theorems of dynamical systems theory Includes bibliographical references and index MATHEMATICS / Topology bisacsh Fractals fast Poincaré series fast Fractals Poincaré series Poincaré-Reihe (DE-588)4174967-4 gnd rswk-swf Fraktal (DE-588)4123220-3 gnd rswk-swf Fraktal (DE-588)4123220-3 s Poincaré-Reihe (DE-588)4174967-4 s 1\p DE-604 Ugalde, E. Sonstige oth Urías, J. Sonstige oth http://www.sciencedirect.com/science/book/9780444521897 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Afraĭmovich, V. S., (Valentin Senderovich) Fractal dimensions for Poincaré recurrences MATHEMATICS / Topology bisacsh Fractals fast Poincaré series fast Fractals Poincaré series Poincaré-Reihe (DE-588)4174967-4 gnd Fraktal (DE-588)4123220-3 gnd |
subject_GND | (DE-588)4174967-4 (DE-588)4123220-3 |
title | Fractal dimensions for Poincaré recurrences |
title_auth | Fractal dimensions for Poincaré recurrences |
title_exact_search | Fractal dimensions for Poincaré recurrences |
title_full | Fractal dimensions for Poincaré recurrences V. Afraimovich, E. Ugalde and J. Urías |
title_fullStr | Fractal dimensions for Poincaré recurrences V. Afraimovich, E. Ugalde and J. Urías |
title_full_unstemmed | Fractal dimensions for Poincaré recurrences V. Afraimovich, E. Ugalde and J. Urías |
title_short | Fractal dimensions for Poincaré recurrences |
title_sort | fractal dimensions for poincare recurrences |
topic | MATHEMATICS / Topology bisacsh Fractals fast Poincaré series fast Fractals Poincaré series Poincaré-Reihe (DE-588)4174967-4 gnd Fraktal (DE-588)4123220-3 gnd |
topic_facet | MATHEMATICS / Topology Fractals Poincaré series Poincaré-Reihe Fraktal |
url | http://www.sciencedirect.com/science/book/9780444521897 |
work_keys_str_mv | AT afraimovichvsvalentinsenderovich fractaldimensionsforpoincarerecurrences AT ugaldee fractaldimensionsforpoincarerecurrences AT uriasj fractaldimensionsforpoincarerecurrences |