An introduction to measure-theoretic probability:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Academic Press, an imprint of Elsevier
2014
|
Ausgabe: | Second edition |
Schlagworte: | |
Online-Zugang: | FUBA1 Volltext |
Beschreibung: | "In this introductory chapter, the concepts of a field and of a [sigma]-field are introduced, they are illustrated bymeans of examples, and some relevant basic results are derived. Also, the concept of a monotone class is defined and its relationship to certain fields and [sigma]-fields is investigated. Given a collection of measurable spaces, their product space is defined, and some basic properties are established. The concept of a measurable mapping is introduced, and its relation to certain [sigma]-fields is studied. Finally, it is shown that any random variable is the pointwise limit of a sequence of simple random variables"-- Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9780128002902 0128002905 9780128000427 |
DOI: | 10.1016/C2012-0-07652-1 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV042300121 | ||
003 | DE-604 | ||
005 | 20230313 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s2014 |||| o||u| ||||||eng d | ||
020 | |a 9780128002902 |c electronic bk. |9 978-0-12-800290-2 | ||
020 | |a 0128002905 |c electronic bk. |9 0-12-800290-5 | ||
020 | |a 9780128000427 |9 978-0-12-800042-7 | ||
024 | 7 | |a 10.1016/C2012-0-07652-1 |2 doi | |
035 | |a (OCoLC)876589188 | ||
035 | |a (DE-599)BVBBV042300121 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-188 | ||
082 | 0 | |a 519.2 |2 23 | |
100 | 1 | |a Roussas, George G. |d 1933- |e Verfasser |0 (DE-588)122639596 |4 aut | |
245 | 1 | 0 | |a An introduction to measure-theoretic probability |c by George G. Roussas |
250 | |a Second edition | ||
264 | 1 | |a Amsterdam [u.a.] |b Academic Press, an imprint of Elsevier |c 2014 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a "In this introductory chapter, the concepts of a field and of a [sigma]-field are introduced, they are illustrated bymeans of examples, and some relevant basic results are derived. Also, the concept of a monotone class is defined and its relationship to certain fields and [sigma]-fields is investigated. Given a collection of measurable spaces, their product space is defined, and some basic properties are established. The concept of a measurable mapping is introduced, and its relation to certain [sigma]-fields is studied. Finally, it is shown that any random variable is the pointwise limit of a sequence of simple random variables"-- | ||
500 | |a Includes bibliographical references and index | ||
650 | 7 | |a Measure theory |2 fast | |
650 | 7 | |a Probabilities |2 fast | |
650 | 4 | |a Probabilities | |
650 | 4 | |a Measure theory | |
650 | 0 | 7 | |a Maßtheorie |0 (DE-588)4074626-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 0 | 1 | |a Maßtheorie |0 (DE-588)4074626-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1016/C2012-0-07652-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027737113 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1016/C2012-0-07652-1 |l FUBA1 |p ZDB-33-ESD |q ZDB-33-ESD 2021 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804152877171605504 |
---|---|
any_adam_object | |
author | Roussas, George G. 1933- |
author_GND | (DE-588)122639596 |
author_facet | Roussas, George G. 1933- |
author_role | aut |
author_sort | Roussas, George G. 1933- |
author_variant | g g r gg ggr |
building | Verbundindex |
bvnumber | BV042300121 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (OCoLC)876589188 (DE-599)BVBBV042300121 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1016/C2012-0-07652-1 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02626nmm a2200529 c 4500</leader><controlfield tag="001">BV042300121</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230313 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128002902</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-12-800290-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128002905</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-12-800290-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128000427</subfield><subfield code="9">978-0-12-800042-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/C2012-0-07652-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)876589188</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042300121</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roussas, George G.</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122639596</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to measure-theoretic probability</subfield><subfield code="c">by George G. Roussas</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Academic Press, an imprint of Elsevier</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"In this introductory chapter, the concepts of a field and of a [sigma]-field are introduced, they are illustrated bymeans of examples, and some relevant basic results are derived. Also, the concept of a monotone class is defined and its relationship to certain fields and [sigma]-fields is investigated. Given a collection of measurable spaces, their product space is defined, and some basic properties are established. The concept of a measurable mapping is introduced, and its relation to certain [sigma]-fields is studied. Finally, it is shown that any random variable is the pointwise limit of a sequence of simple random variables"--</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Measure theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Probabilities</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/C2012-0-07652-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027737113</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1016/C2012-0-07652-1</subfield><subfield code="l">FUBA1</subfield><subfield code="p">ZDB-33-ESD</subfield><subfield code="q">ZDB-33-ESD 2021</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV042300121 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:17:41Z |
institution | BVB |
isbn | 9780128002902 0128002905 9780128000427 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027737113 |
oclc_num | 876589188 |
open_access_boolean | |
owner | DE-1046 DE-188 |
owner_facet | DE-1046 DE-188 |
physical | 1 Online-Ressource |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD ZDB-33-ESD ZDB-33-ESD 2021 |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Academic Press, an imprint of Elsevier |
record_format | marc |
spelling | Roussas, George G. 1933- Verfasser (DE-588)122639596 aut An introduction to measure-theoretic probability by George G. Roussas Second edition Amsterdam [u.a.] Academic Press, an imprint of Elsevier 2014 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier "In this introductory chapter, the concepts of a field and of a [sigma]-field are introduced, they are illustrated bymeans of examples, and some relevant basic results are derived. Also, the concept of a monotone class is defined and its relationship to certain fields and [sigma]-fields is investigated. Given a collection of measurable spaces, their product space is defined, and some basic properties are established. The concept of a measurable mapping is introduced, and its relation to certain [sigma]-fields is studied. Finally, it is shown that any random variable is the pointwise limit of a sequence of simple random variables"-- Includes bibliographical references and index Measure theory fast Probabilities fast Probabilities Measure theory Maßtheorie (DE-588)4074626-4 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content Wahrscheinlichkeitstheorie (DE-588)4079013-7 s Maßtheorie (DE-588)4074626-4 s 1\p DE-604 https://doi.org/10.1016/C2012-0-07652-1 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Roussas, George G. 1933- An introduction to measure-theoretic probability Measure theory fast Probabilities fast Probabilities Measure theory Maßtheorie (DE-588)4074626-4 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
subject_GND | (DE-588)4074626-4 (DE-588)4079013-7 (DE-588)4151278-9 |
title | An introduction to measure-theoretic probability |
title_auth | An introduction to measure-theoretic probability |
title_exact_search | An introduction to measure-theoretic probability |
title_full | An introduction to measure-theoretic probability by George G. Roussas |
title_fullStr | An introduction to measure-theoretic probability by George G. Roussas |
title_full_unstemmed | An introduction to measure-theoretic probability by George G. Roussas |
title_short | An introduction to measure-theoretic probability |
title_sort | an introduction to measure theoretic probability |
topic | Measure theory fast Probabilities fast Probabilities Measure theory Maßtheorie (DE-588)4074626-4 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
topic_facet | Measure theory Probabilities Maßtheorie Wahrscheinlichkeitstheorie Einführung |
url | https://doi.org/10.1016/C2012-0-07652-1 |
work_keys_str_mv | AT roussasgeorgeg anintroductiontomeasuretheoreticprobability |