Monoidal topology: a categorical approach to order, metric and topology
"Monoidal Topology describes an active research area that, after various past proposals on how to axiomatize "spaces" in terms of convergence, began to emerge at the beginning of the millennium. It combines Barr's relational presentation of topological spaces in terms of ultrafil...
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2014
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Encyclopedia of mathematics and its applications
153 |
Schlagworte: | |
Online-Zugang: | Cover image |
Zusammenfassung: | "Monoidal Topology describes an active research area that, after various past proposals on how to axiomatize "spaces" in terms of convergence, began to emerge at the beginning of the millennium. It combines Barr's relational presentation of topological spaces in terms of ultrafilter convergence with Lawvere's interpretation of metric spaces as small categories enriched over the extended real half-line".. |
Beschreibung: | XVII, 503 S. graph. Darst. |
ISBN: | 9781107063945 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV042155691 | ||
003 | DE-604 | ||
005 | 20180205 | ||
007 | t | ||
008 | 141028s2014 xxud||| |||| 00||| eng d | ||
010 | |a 013046221 | ||
020 | |a 9781107063945 |c hardback |9 978-1-107-06394-5 | ||
035 | |a (OCoLC)903436519 | ||
035 | |a (DE-599)BVBBV042155691 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-12 |a DE-83 |a DE-384 | ||
050 | 0 | |a QA387 | |
082 | 0 | |a 514/.32 |2 23 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a 22-06 |2 msc | ||
245 | 1 | 0 | |a Monoidal topology |b a categorical approach to order, metric and topology |c ed. by Dirk Hofmann ... |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2014 | |
300 | |a XVII, 503 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications |v 153 | |
520 | |a "Monoidal Topology describes an active research area that, after various past proposals on how to axiomatize "spaces" in terms of convergence, began to emerge at the beginning of the millennium. It combines Barr's relational presentation of topological spaces in terms of ultrafilter convergence with Lawvere's interpretation of metric spaces as small categories enriched over the extended real half-line".. | ||
650 | 7 | |a MATHEMATICS / Logic |2 bisacsh | |
650 | 4 | |a Topological semigroups | |
650 | 4 | |a Group theory | |
650 | 4 | |a MATHEMATICS / Logic | |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 0 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Hofmann, Dirk |e Sonstige |4 oth | |
830 | 0 | |a Encyclopedia of mathematics and its applications |v 153 |w (DE-604)BV000903719 |9 153 | |
856 | 4 | |u http://assets.cambridge.org/97811070/63945/cover/9781107063945.jpg |y Cover image | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027595447 |
Datensatz im Suchindex
_version_ | 1804152650077306880 |
---|---|
any_adam_object | |
building | Verbundindex |
bvnumber | BV042155691 |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 |
callnumber-search | QA387 |
callnumber-sort | QA 3387 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 340 |
ctrlnum | (OCoLC)903436519 (DE-599)BVBBV042155691 |
dewey-full | 514/.32 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.32 |
dewey-search | 514/.32 |
dewey-sort | 3514 232 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02085nam a2200493 cb4500</leader><controlfield tag="001">BV042155691</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180205 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">141028s2014 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">013046221</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107063945</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-107-06394-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)903436519</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042155691</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA387</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.32</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">22-06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Monoidal topology</subfield><subfield code="b">a categorical approach to order, metric and topology</subfield><subfield code="c">ed. by Dirk Hofmann ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 503 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">153</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Monoidal Topology describes an active research area that, after various past proposals on how to axiomatize "spaces" in terms of convergence, began to emerge at the beginning of the millennium. It combines Barr's relational presentation of topological spaces in terms of ultrafilter convergence with Lawvere's interpretation of metric spaces as small categories enriched over the extended real half-line"..</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Logic</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological semigroups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MATHEMATICS / Logic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hofmann, Dirk</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">153</subfield><subfield code="w">(DE-604)BV000903719</subfield><subfield code="9">153</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://assets.cambridge.org/97811070/63945/cover/9781107063945.jpg</subfield><subfield code="y">Cover image</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027595447</subfield></datafield></record></collection> |
id | DE-604.BV042155691 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:14:05Z |
institution | BVB |
isbn | 9781107063945 |
language | English |
lccn | 013046221 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027595447 |
oclc_num | 903436519 |
open_access_boolean | |
owner | DE-703 DE-12 DE-83 DE-384 |
owner_facet | DE-703 DE-12 DE-83 DE-384 |
physical | XVII, 503 S. graph. Darst. |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Cambridge Univ. Press |
record_format | marc |
series | Encyclopedia of mathematics and its applications |
series2 | Encyclopedia of mathematics and its applications |
spelling | Monoidal topology a categorical approach to order, metric and topology ed. by Dirk Hofmann ... 1. publ. Cambridge [u.a.] Cambridge Univ. Press 2014 XVII, 503 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Encyclopedia of mathematics and its applications 153 "Monoidal Topology describes an active research area that, after various past proposals on how to axiomatize "spaces" in terms of convergence, began to emerge at the beginning of the millennium. It combines Barr's relational presentation of topological spaces in terms of ultrafilter convergence with Lawvere's interpretation of metric spaces as small categories enriched over the extended real half-line".. MATHEMATICS / Logic bisacsh Topological semigroups Group theory MATHEMATICS / Logic Topologie (DE-588)4060425-1 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 s Topologie (DE-588)4060425-1 s DE-604 Hofmann, Dirk Sonstige oth Encyclopedia of mathematics and its applications 153 (DE-604)BV000903719 153 http://assets.cambridge.org/97811070/63945/cover/9781107063945.jpg Cover image |
spellingShingle | Monoidal topology a categorical approach to order, metric and topology Encyclopedia of mathematics and its applications MATHEMATICS / Logic bisacsh Topological semigroups Group theory MATHEMATICS / Logic Topologie (DE-588)4060425-1 gnd Gruppentheorie (DE-588)4072157-7 gnd |
subject_GND | (DE-588)4060425-1 (DE-588)4072157-7 |
title | Monoidal topology a categorical approach to order, metric and topology |
title_auth | Monoidal topology a categorical approach to order, metric and topology |
title_exact_search | Monoidal topology a categorical approach to order, metric and topology |
title_full | Monoidal topology a categorical approach to order, metric and topology ed. by Dirk Hofmann ... |
title_fullStr | Monoidal topology a categorical approach to order, metric and topology ed. by Dirk Hofmann ... |
title_full_unstemmed | Monoidal topology a categorical approach to order, metric and topology ed. by Dirk Hofmann ... |
title_short | Monoidal topology |
title_sort | monoidal topology a categorical approach to order metric and topology |
title_sub | a categorical approach to order, metric and topology |
topic | MATHEMATICS / Logic bisacsh Topological semigroups Group theory MATHEMATICS / Logic Topologie (DE-588)4060425-1 gnd Gruppentheorie (DE-588)4072157-7 gnd |
topic_facet | MATHEMATICS / Logic Topological semigroups Group theory Topologie Gruppentheorie |
url | http://assets.cambridge.org/97811070/63945/cover/9781107063945.jpg |
volume_link | (DE-604)BV000903719 |
work_keys_str_mv | AT hofmanndirk monoidaltopologyacategoricalapproachtoordermetricandtopology |