Diffractive nanophotonics:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
CRC Press
2014
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XIX, 679 S. Ill., graph. Darst. |
ISBN: | 9781466590694 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042058021 | ||
003 | DE-604 | ||
005 | 20150225 | ||
007 | t | ||
008 | 140904s2014 ad|| |||| 00||| eng d | ||
020 | |a 9781466590694 |9 978-1-4665-9069-4 | ||
035 | |a (OCoLC)900668209 | ||
035 | |a (DE-599)BSZ405925956 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-29T | ||
084 | |a UH 5500 |0 (DE-625)145663: |2 rvk | ||
084 | |a VE 9850 |0 (DE-625)147163:253 |2 rvk | ||
245 | 1 | 0 | |a Diffractive nanophotonics |c ed. by Victor A. Soifer |
264 | 1 | |a Boca Raton [u.a.] |b CRC Press |c 2014 | |
300 | |a XIX, 679 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Nanophotonik |0 (DE-588)7618094-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nanophotonik |0 (DE-588)7618094-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Soifer, Victor A. |e Sonstige |0 (DE-588)1055799427 |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027498960&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027498960&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-027498960 |
Datensatz im Suchindex
_version_ | 1804152494981382144 |
---|---|
adam_text | ip,
an
Informa
business
5-9O69-4
(Hardback)
luthentíc
and highly regarded sources. Reasonable
d
information, but the author and publisher cannot
.Is or the consequences of their use. The authors and
olders of all material reproduced ir this publication
о
publish in this form has not been obtained. If any
rase write and let us know so we may rectify in any
о
part of this book may be reprinted, reproduced,
oníc,
mechanical, or other means, now known or
filming, and recording, or in any information
stor-
ι
from the publishers.
ronically from this work, please access www.copy-
the
Copyright
Clearance Center, Inc.
(CCC),
222
ЭО.
CľCľC
is a not-for-profit organization that pro-
i. For organizations that have been granted a pbo-
rment has been arranged.
¿у
be trademarks or registered trademarks, and are
t
intent to infringe.
Contents
1 Basic
equations of
diffractive nanophotonics 1
1.1. Maxwell
equations
2
i. J.
І.
Mathematical concepts and notations
2
1.1.2.
Maxwells equations in differential form
3
1.1.3
Maxwell s equations in integral form
4
1.1.4.
Fields at interfaces
5
1.1.5.
Poyntings theorem
5
1.2.
Differential equations of optics
6
1.2.1.
The wave equation
6
1.2.2.
Helmholtz equations
7
1.2.3.
The Fock—Leontovich equation
7
1.2.4.
Eikonal and transport equations
8
1.3.
Integral theorems of optics
8
1.3.1.
Greens formulas
8
1.3.2.
Stratton-Chu formula
11
1.4.
Integral transformations in optics
15
1.4.1. Kirchhoff
integral
16
1.4.2.
Fresnel transform
17
Conclusion
18
References
19
2
Numerical methods for diffraction theory
20
2.1.
The finite-difference time-domain method for solving
Maxwell s equation
22
2.1.1.
Explicit difference approximation for Maxwell s equations
22
2.1.1.1.
One-dimensional case
22
2.1.1.2.
The two-dimensional case
26
2.1.2.
Transition from time domain to frequency domain
32
2.1.3.
Application of absorbing layers
34
2.1.3.1.
Formulation of absorbing boundary conditions and
the imposition of absorbing layers
34
2.1.3.2.
The difference approximation of Maxwell s equations in
absorbing layers
37
2.1.3.3.
Association of absorbing layers in vectorization of
calculations
33
2.1.3.4.
Universal grid areas
42
vj Contents
2.1.4.
Incident wave source conditions
46
2.1.4.1.
Hard source conditions
48
2.1.4.2.
The total field formulation method
51
2.1.4.3.
The method of separation of the field
54
2.1.4.4.
Comparison of methods for the formation of the incident
wave
62
2.1.5.
Decomposition of the grid region
64
2.1.5.1.
Decomposition of the one-dimensional grid region
66
2.1.5.2.
Decomposition of two-dimensional grid region
71
2.1.6.
Simulation of the effect of the etching wedge on the focusing of
radiation of cylindrical microlenses with a high numerical aperture
75
2.1.6.1.
Selection of parameters of computational experiments
75
2.1.6.2.
Simulation of radiation through a microlens with
an etching wedge
75
2.2.
Numerical solution of the Helmholtz equations
BPM-approach)
77
2.2.1.
The beam propagation method and its variants
77
2.2.2.
Solution on the basis of expansion into thin optical elements
(FFTBPM)
85
2.2.3.
Solution on the basis of the finite difference method (FD BPM)
89
2.2.4.
Solution on the basis of the finite element method (FE BPM)
93
2.2.5.
Approaches to solving the Helmholtz vector equation
96
2.2.6.
Examples of application of BPM
99
Conclusion
102
References
105
3.
Diffraction on cylindrical inhomogeneities
comparable to the wavelength
110
3.1.
Analysis of diffraction on inhomogeneities by the combined
finite element method and boundary element method 111
3.1.1.
Analysis of diffraction on inhomogeneities by the combined finite
element and boundary element method 111
3.1.2
Analysis of the diffraction of light on periodic inhomogeneities
121
3.2.
Finite element method for solving the two-dimensional
integral diffraction equation
131
3.2.1.
TE-polarization
131
3.2.2.
TM-polarization
135
3.2.3.
Application of finite element method for solving integral equation
139
3.2.4.
Convergence of the approximate solution
< 142
3.2.5.
The diffraction of light by cylindrical microlenses
143
3.2.6.
Diffraction of light on microscopic objects with apiecewise-
uniform refractive index
146
3.3.
Diffraction of light on inhomogeneous dielectric cylinders
149
Contents
vii
3.3.1.
Solution
of the
problem
of diffraction of an arbitrary wave on
a cylindrical multilayer dielectric cylinder by separation of variables
150
3.3.2.
The analytical solution for a two-layer cylinder
161
3.3.3.
Diffraction on a gradient microlens. Diffraction of electromagnetic
waves on the internal Luneberg lenses
164
3.4.
Fast iterative method for calculating the diffraction field
of a monochromatic electromagnetic wave on a dielectric
cylinder
173
3.4.1.
An iterative method for calculating the diffraction of TE-polarized
wave
173
3.4.2.
An iterative method for calculating the diffraction of TM-polarized
wave
177
3.4.3.
Relaxation of the iterative method
182
3.4.4.
Comparison with the analytical calculation of diffraction of
a plane wave
184
References
190
4.
Modelling of periodic diffractive micro- and
nanostructures
194
4.1.
The method of rigorous coupled-wave analysis for solving
the diffraction problem in periodic diffractive structures
195
4.1.1.
The equation of a plane wave
195
4.1.2.
The method of rigorous coupled-wave analysis in the two-dimensional
case
199
4.1.2.1
The geometry of the structure and formulation of the
problem
199
4.1.2.2.
Presentation of the field above and below the structure
200
4.1.2.3.
The system of differential equations to describe the field
inside the layer
201
4.1.2.5.
Stitching of the electromagnetic field on the layer
boundaries
212
4.1.2.6.
Numerically stable implementation of the method
214
4.1.2.7.
Characteristics of diffraction orders
217
4.1.3.
Fourier modal method in a three-dimensional case
218
4.1.4.
Examples of calculation of diffraction gratings
223
4.1.4.1.
Grating polarizers
223
4.1.4.2.
The beam splitter t
224
4.1.4.3.
Subwavelength antireflection coatings
227
4.2.
Formation of high-frequency interference patterns of
surface plasma polaritons by diffraction gratings
230
4.2.1.
Surface plasma polaritons (SPP)
231
4.2.1.1.
The equation of a surface plasma polariton
231
4.2.1.2.
The properties of surface plasma polaritons
235
4.2.1.3.
Excitation of surface plasma polaritons
239
viii Contents
4.2.2. Formation
of one-
dimensional
interference patterns of surface plasma
polaritons
242
4.2.3.
Formation of two-dimensional interference patterns of surface
plasma polaritons
248
4.2.4.
Diffractive optical elements for focusing of surface plasma polaritons
260
4.3.
Diffractive heterostructures with resonant magneto-optical
properties
267
4.3.1.
Magneto-optical effects in the polar geometry
267
4.3.1.1.
The geometry of the structure
267
4.3.1.2.
The study of magneto-optical effects
268
4.3.1.3.
Investigation of three-layer structure
273
4.3.2.
Magneto-optical effects in meridional geometry
275
4.3.2.1.
The geometry of the structure and type of magneto-optical
effect
275
4.3.2.2.
Investigation of the magneto-optical effect
276
4.3.3.
The magneto-optical effects in the equatorial geometry
282
4.3.3.1
The geometry of the structure and type of magneto-optical
effect
282
4.3.3.2.
Explanation of the magneto-optical effect
283
4.3.3.3.
The equation of a surface plasma polariton at the
boundary of a magnetized medium
285
4.4.
Metrology of periodic micro- and nanostructures by the
reflectometry method
288
4.4.1.
Formulation of the problem
289
4.4.2.
Methods for estimating the geometric parameters of the profile of
the grating
290
4.3.3.
Determining the parameters of a trapezoidal profile
291
Conclusion
294
References
296
5.
Photonic crystals and light focusing
300
5.1.
One- and two-dimensional photonic crystals
300
5.1.2.
Plane wave diffraction on photonic crystals without defects
303
5.1.3.
Propagation of light in a photonic crystal waveguide
303
5.1.4.
Photonic crystal collimators
303
5.2.
Two-dimensional photonic crystal gradient Mikaelian lens
306
5.2.1.
The modal solution for the gradient secant-index waveguide
308
5.2.2.
Photonic crystal gradient lens
310
5.2.3.
The photonic crystal lens for coupling two waveguides
314
5.3.
Sharp focusing of radially-polarized light
326
5.3.1.
Richards-Wolf vector formulas
330
5.3.2.
The minimum focal spot: an analytical estimation
332
5.3.3.
Maxwell s equations in cylindrical coordinates
333
5.3.4.
Maxwell s equations for the incident wave with linear polarization
337
Contents ix
5.3.5.
Maxwell s equations for azimuthal polarization
339
5.3.6.
Maxwell s equations for radial polarization
340
5.3.7.
Modelling the focusing of a plane linearly polarized wave by
a spherical microlens
342
5.3.8.
Focusing the light by biconvex spherical microlenses
344
5.3.9.
Focusing of
aplane
wave with radial polarization by a gradient
cylindrical microlens
344
5.3.10.
Focusing of a Gaussian beam with radial polarization using a
conical microaxicon
345
5.4.
Three-dimensional photonic crystals
346
5.5.
Interefence-litographic synthesis of photonic crystals
351
5.5.1.
The scheme of recording the lattice
352
5.5.2.
Description of experiments and the resulting structure
353
5.6
Three-dimensional photonic approximants of quasicrystals
and related structures
355
5.6.1.
The geometrical structure of the quasicrystal approximants
356
5.6.2.
Numerical analysis of quasicrystal approximants
357
5.6.3.
Photonic crystal with the lattice symmetry of dathrate Si34
362
5.7.
One-dimensional photonic crystal based on a nanocomposite:
metal nanopartides
-
a dielectric
365
References
370
6.
Photonic crystal fibres
376
6.1.
Calculation of modes of photonic crystal fibres by the
method of matched sinusoidal modes
380
6.1.1.
Method of matched sinusoidal modes in the scalar case
380
6.1.2.
Method of matched sinusoidal modes in the vector case
393
6.1.3.
The Krylov method for solving non-linear eigenvalue problems
399
6.1.4.
Calculation by the modes of the stepped fibre
403
6.1.5.
Calculation of modes of the photonic-crystal fibre
408
6.1.6.
Calculation of modes using Fimmwave software
409
6.2.
Calculation of modes of photonic-crystal light guides by the
finite difference method
411
6.2.1.
A difference method for calculating the modes for electric fields
412
6.2.2.
The difference method for calculating the modes for magnetic fields
422
6.2.3.
Calculation of modes of photonic-crystal fibres with a filled core
424
6.2.4.
Calculation of modes of photonic-crystal fibre with a hollow core
425
6.2.5.
Calculation of modes of Bragg fibres
428
6.2.6.
Comparison of the calculation of the waveguide modes by
differential method
428
References
431
x
Contents
7. Singular
optics and
superresolution
434
7.1.
Optical elements that form wavefronts with helical phase
singularities
436
7.1.1.
The spiral phase plate (SPP)
436
7.1.2.
Spiral zone plates
437
7.1.3.
Gratings with a fork
437
7.1.4.
Screw conical axicon
437
7.1.5.
Helical logarithmic axicon
439
7.2.
The spiral phase plate
439
7.2.1.
Hankel transform
440
7.2.2.
Radial Hilbert transform
442
7.2.3.
Diffraction of a Gaussian beam on SPP: scalar theory. Fresnel
diffraction of Gaussian beam on SPP
443
7.2.4.
Diffraction of a Gaussian beam on SPP: vector theory
448
7.2.5.
Fresnel diffraction of a restricted plane wave on SPP
454
7.2.6.
Diffraction of a restricted plane wave on SPP: paraxial
vectorial
theory
456
7.3.
Quantized SPP with a restricted aperture, illuminated
by a plane wave
460
7.4.
Helical conical axicon
465
7.4.1.
Diffraction of Gaussian beam on a restricted helical axicon
466
7.4.2.
Diffraction of a restricted place wave on a helical axicon
471
7.5.
Helical logarithmic axicon
475
7.5.1.
General theory ofhypergeometric laser beams
475
7.5.2.
Hypergeometric modes
478
7.5.3.
Formation ofhypergeometric laser beams
482
7.5.4.
Special cases of hypergeometric beams
485
7.5.5.
Non-paraxial hypergeometric beams
490
7.5.6.
Superresolution
by means of hypergeometric laser beams
496
7.6.
Elliptic vortex beams
496
7.6.1.
Astigmatic Bessel beams
496
7.6.2.
Elliptic Laguerre-Gaussian beams
504
7.7.
The vortex beams in optical fibres
518
7.7.1.
Optical vortices in a step-index fibre
518
7.7.2.
Optical vortices in gradient fibres
533
7.8.
Matrices of optical vortices
540
7.9.
Simulation of an optical vortex generated by a plane wave
diffracted by a spiral phase plate
545
References
545
8.
Optical trapping and manipulation of micro- and
nano-objects
553
8.1.
Calculation of the force acting on the micro-object by a
Contents xi
focused laser beam
553
8.1.1.
Electromagnetic force for the three-dimensional case
555
8.1.2.
Electromagnetic force for the two-dimensional case
557
8.1.3.
Calculation of force for a plane wave
558
8.1.4.
Calculation of force for a non-paraxial Gaussian beam
560
8.1.5.
Calculation offerees for the refractive index of the object smaller
than the refractive index of the medium
566
8.2.
Methods for calculating the torque acting on a micro-object
by a focused laser beam
567
8.2.1.
The orbital angular momentum in cylindrical microparticles
569
8.2.2.
The results of numerical simulation of the torque
570
8.3.
A geometrical optics method for calculating the force acting
by light on a microscopic object
576
8.3.1.
Description of the method
576
8.3.2.
Comparison of results of calculations by geometrical optics and
electromagnetic methods
580
8.4.
Rotation of micro-objects in a Bessel beam
582
8.4.1.
Transformation of diffractionless Bessel beams
582
8.4.2.
Umov-Poynting vector for the non-paraxial 2D vector Bessel beam
584
8.4.3.
Umov-Poynting vector for the paraxial
3D
vector Bessel beam
587
8.4.4.
The orbital angular momentum for a Bessel beam
589
8.4.5.
DOE to form a Bessel beam
590
8.4.6.
Experimental study of movements of the micro-objects in the Bessel
beam
592
8.5.
Optical rotation using a multiorder spiral phase plate
595
8.6.
Rotation of microscopic objects in a vortex light ring formed
by an axicon
597
8.7.
Optical rotation in a double light ring
598
8.7.1.
Production of DOE by electron-beam lithography
599
8.7.2.
Production of DOE using photolithography
600
8.7.3.
Formation of the DOE with a liquid-crystal display
600
8.7.4.
Formation of a double ring of light with different types of DOE
602
8.8.
Optical rotation in a double ring of light
602
8.9.
Rotation of micro-objects by means of hypergeometric
beams and beams that do not have the orbital angular
momentum using the spatial light modulator
(SLM)
603
8.9.1.
Rotation of hypergeometric beams
604
8.9.2.
Rotation of the laser beams with no orbital angular momentum
607
8.10.
Investigation of rotation of micro-objects in light beams
with orbital angular momentum
613
8.10.1.
Investigation of rotation of micro-objects in the Bessel beam
613
8.10.2.
Studies of mechanical characteristics of rotation of micro-objects
PHYSICS
^^
Diffractive Nanophotonics demonstrates the utility of the well-established methods of
diffractive computer optics in solving nanophotonics tasks. It is concerned with peculiar
properties of laser light diffraction by microoptics elements with nanoscale features and
light confinement in subwavelength space regions. Written by recognized experts in
this field, the book covers in detail a wide variety of advanced methods for the rigorous
simulation of light diffraction. The authors apply their expertise to addressing cutting-
edge problems in nanophotonics.
Chapters consider the basic equations of diffractive nanophotonics and related
transformations and numerical methods for solving diffraction problems under strict
electromagnetic theory. They examine the diffraction of light on two-dimensional
microscopic objects of arbitrary shape and present a numerical method for solving
the problem of diffraction on periodic diffractive micro- and nanostructures. This
method is used in modern trends in nanophotonics, such as plasmonics, metamaterials,
and nanometrology. The book describes the simulation of electromagnetic waves in
nanophotonic devices and discusses two methods of calculating the spatial modes of
microstructured photonic crystal fibres
—
a relatively new class of optical fibres with
the properties of photonic crystals.
The book explains the theory of paraxial and non-paraxial laser beams with axial
symmetry and an orbital angular momentum
—
called vortex beams
—
which are used
for optical trapping and rotating micro- and nanoparticles in a ring in the cross-sectional
plane of the beam. The final chapter discusses methods for calculating the force and
torque exerted by the electromagnetic field focused onto the microparticle of arbitrary
form, whose dimensions are comparable with the wavelength of light.
|
any_adam_object | 1 |
author_GND | (DE-588)1055799427 |
building | Verbundindex |
bvnumber | BV042058021 |
classification_rvk | UH 5500 VE 9850 |
ctrlnum | (OCoLC)900668209 (DE-599)BSZ405925956 |
discipline | Chemie / Pharmazie Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01532nam a2200337 c 4500</leader><controlfield tag="001">BV042058021</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150225 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">140904s2014 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781466590694</subfield><subfield code="9">978-1-4665-9069-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)900668209</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ405925956</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5500</subfield><subfield code="0">(DE-625)145663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9850</subfield><subfield code="0">(DE-625)147163:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diffractive nanophotonics</subfield><subfield code="c">ed. by Victor A. Soifer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 679 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanophotonik</subfield><subfield code="0">(DE-588)7618094-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanophotonik</subfield><subfield code="0">(DE-588)7618094-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Soifer, Victor A.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1055799427</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027498960&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027498960&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027498960</subfield></datafield></record></collection> |
id | DE-604.BV042058021 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:11:37Z |
institution | BVB |
isbn | 9781466590694 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027498960 |
oclc_num | 900668209 |
open_access_boolean | |
owner | DE-703 DE-29T |
owner_facet | DE-703 DE-29T |
physical | XIX, 679 S. Ill., graph. Darst. |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | CRC Press |
record_format | marc |
spelling | Diffractive nanophotonics ed. by Victor A. Soifer Boca Raton [u.a.] CRC Press 2014 XIX, 679 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Nanophotonik (DE-588)7618094-3 gnd rswk-swf Nanophotonik (DE-588)7618094-3 s DE-604 Soifer, Victor A. Sonstige (DE-588)1055799427 oth Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027498960&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027498960&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Diffractive nanophotonics Nanophotonik (DE-588)7618094-3 gnd |
subject_GND | (DE-588)7618094-3 |
title | Diffractive nanophotonics |
title_auth | Diffractive nanophotonics |
title_exact_search | Diffractive nanophotonics |
title_full | Diffractive nanophotonics ed. by Victor A. Soifer |
title_fullStr | Diffractive nanophotonics ed. by Victor A. Soifer |
title_full_unstemmed | Diffractive nanophotonics ed. by Victor A. Soifer |
title_short | Diffractive nanophotonics |
title_sort | diffractive nanophotonics |
topic | Nanophotonik (DE-588)7618094-3 gnd |
topic_facet | Nanophotonik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027498960&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027498960&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT soifervictora diffractivenanophotonics |