Multi-scale analysis for random quantum systems with interaction:
The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems wi...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York
Birkhäuser
2014
|
Schriftenreihe: | Progress in mathematical physics
65 |
Schlagworte: | |
Online-Zugang: | SpringerLink |
Zusammenfassung: | The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction presents the progress that had been recently achieved in this area. The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd |
Beschreibung: | Single-particle Localisation -- A Brief History of Anderson Localization.- Single-Particle MSA Techniques -- Multi-particle Localization -- Multi-particle Eigenvalue Concentration Bounds -- Multi-particle MSA Techniques Includes bibliographical references and index |
Beschreibung: | XI, 238 S. graph. Darst. |
ISBN: | 9781461482253 |
DOI: | 10.1007/978-1-4614-8226-0 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV041367220 | ||
003 | DE-604 | ||
005 | 20140123 | ||
007 | t | ||
008 | 131018s2014 d||| |||| 00||| eng d | ||
020 | |a 9781461482253 |9 978-1-4614-8225-3 | ||
035 | |a (OCoLC)862830284 | ||
035 | |a (DE-599)BVBBV041367220 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-19 | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UL 1000 |0 (DE-625)145815: |2 rvk | ||
100 | 1 | |a Čulaevskij, V. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Multi-scale analysis for random quantum systems with interaction |c Victor Chulaevsky ; Yuri Suhov |
264 | 1 | |a New York |b Birkhäuser |c 2014 | |
300 | |a XI, 238 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in mathematical physics |v 65 | |
500 | |a Single-particle Localisation -- A Brief History of Anderson Localization.- Single-Particle MSA Techniques -- Multi-particle Localization -- Multi-particle Eigenvalue Concentration Bounds -- Multi-particle MSA Techniques | ||
500 | |a Includes bibliographical references and index | ||
520 | |a The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction presents the progress that had been recently achieved in this area. The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd | ||
650 | 4 | |a Multiscale modeling | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Applications of Mathematics | |
650 | 0 | 7 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vielteilchensystem |0 (DE-588)4063491-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrskalenanalyse |0 (DE-588)4416235-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |D s |
689 | 0 | 1 | |a Mehrskalenanalyse |0 (DE-588)4416235-2 |D s |
689 | 0 | 2 | |a Vielteilchensystem |0 (DE-588)4063491-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Suchov, Jurij M. |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4614-8226-0 |
830 | 0 | |a Progress in mathematical physics |v 65 |w (DE-604)BV013823265 |9 65 | |
856 | 4 | |u https://doi.org/10.1007/978-1-4614-8226-0 |3 SpringerLink | |
999 | |a oai:aleph.bib-bvb.de:BVB01-026815432 |
Datensatz im Suchindex
_version_ | 1804151455160991744 |
---|---|
any_adam_object | |
author | Čulaevskij, V. A. Suchov, Jurij M. |
author_facet | Čulaevskij, V. A. Suchov, Jurij M. |
author_role | aut aut |
author_sort | Čulaevskij, V. A. |
author_variant | v a č va vač j m s jm jms |
building | Verbundindex |
bvnumber | BV041367220 |
classification_rvk | SK 950 UL 1000 |
ctrlnum | (OCoLC)862830284 (DE-599)BVBBV041367220 |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-1-4614-8226-0 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03034nam a2200517 cb4500</leader><controlfield tag="001">BV041367220</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140123 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">131018s2014 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461482253</subfield><subfield code="9">978-1-4614-8225-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)862830284</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041367220</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UL 1000</subfield><subfield code="0">(DE-625)145815:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Čulaevskij, V. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multi-scale analysis for random quantum systems with interaction</subfield><subfield code="c">Victor Chulaevsky ; Yuri Suhov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 238 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematical physics</subfield><subfield code="v">65</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Single-particle Localisation -- A Brief History of Anderson Localization.- Single-Particle MSA Techniques -- Multi-particle Localization -- Multi-particle Eigenvalue Concentration Bounds -- Multi-particle MSA Techniques</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction presents the progress that had been recently achieved in this area. The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiscale modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vielteilchensystem</subfield><subfield code="0">(DE-588)4063491-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrskalenanalyse</subfield><subfield code="0">(DE-588)4416235-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrskalenanalyse</subfield><subfield code="0">(DE-588)4416235-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Vielteilchensystem</subfield><subfield code="0">(DE-588)4063491-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suchov, Jurij M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4614-8226-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematical physics</subfield><subfield code="v">65</subfield><subfield code="w">(DE-604)BV013823265</subfield><subfield code="9">65</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4614-8226-0</subfield><subfield code="3">SpringerLink</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026815432</subfield></datafield></record></collection> |
id | DE-604.BV041367220 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:55:05Z |
institution | BVB |
isbn | 9781461482253 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026815432 |
oclc_num | 862830284 |
open_access_boolean | |
owner | DE-384 DE-19 DE-BY-UBM |
owner_facet | DE-384 DE-19 DE-BY-UBM |
physical | XI, 238 S. graph. Darst. |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in mathematical physics |
series2 | Progress in mathematical physics |
spelling | Čulaevskij, V. A. Verfasser aut Multi-scale analysis for random quantum systems with interaction Victor Chulaevsky ; Yuri Suhov New York Birkhäuser 2014 XI, 238 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Progress in mathematical physics 65 Single-particle Localisation -- A Brief History of Anderson Localization.- Single-Particle MSA Techniques -- Multi-particle Localization -- Multi-particle Eigenvalue Concentration Bounds -- Multi-particle MSA Techniques Includes bibliographical references and index The study of quantum disorder has generated considerable research activity in mathematics and physics over past 40 years. While single-particle models have been extensively studied at a rigorous mathematical level, little was known about systems of several interacting particles, let alone systems with positive spatial particle density. Creating a consistent theory of disorder in multi-particle quantum systems is an important and challenging problem that largely remains open. Multi-scale Analysis for Random Quantum Systems with Interaction presents the progress that had been recently achieved in this area. The main focus of the book is on a rigorous derivation of the multi-particle localization in a strong random external potential field. To make the presentation accessible to a wider audience, the authors restrict attention to a relatively simple tight-binding Anderson model on a cubic lattice Zd Multiscale modeling Functional Analysis Mathematical Methods in Physics Probability Theory and Stochastic Processes Applications of Mathematics Quantenmechanisches System (DE-588)4300046-0 gnd rswk-swf Vielteilchensystem (DE-588)4063491-7 gnd rswk-swf Mehrskalenanalyse (DE-588)4416235-2 gnd rswk-swf Quantenmechanisches System (DE-588)4300046-0 s Mehrskalenanalyse (DE-588)4416235-2 s Vielteilchensystem (DE-588)4063491-7 s DE-604 Suchov, Jurij M. Verfasser aut Erscheint auch als Online-Ausgabe 978-1-4614-8226-0 Progress in mathematical physics 65 (DE-604)BV013823265 65 https://doi.org/10.1007/978-1-4614-8226-0 SpringerLink |
spellingShingle | Čulaevskij, V. A. Suchov, Jurij M. Multi-scale analysis for random quantum systems with interaction Progress in mathematical physics Multiscale modeling Functional Analysis Mathematical Methods in Physics Probability Theory and Stochastic Processes Applications of Mathematics Quantenmechanisches System (DE-588)4300046-0 gnd Vielteilchensystem (DE-588)4063491-7 gnd Mehrskalenanalyse (DE-588)4416235-2 gnd |
subject_GND | (DE-588)4300046-0 (DE-588)4063491-7 (DE-588)4416235-2 |
title | Multi-scale analysis for random quantum systems with interaction |
title_auth | Multi-scale analysis for random quantum systems with interaction |
title_exact_search | Multi-scale analysis for random quantum systems with interaction |
title_full | Multi-scale analysis for random quantum systems with interaction Victor Chulaevsky ; Yuri Suhov |
title_fullStr | Multi-scale analysis for random quantum systems with interaction Victor Chulaevsky ; Yuri Suhov |
title_full_unstemmed | Multi-scale analysis for random quantum systems with interaction Victor Chulaevsky ; Yuri Suhov |
title_short | Multi-scale analysis for random quantum systems with interaction |
title_sort | multi scale analysis for random quantum systems with interaction |
topic | Multiscale modeling Functional Analysis Mathematical Methods in Physics Probability Theory and Stochastic Processes Applications of Mathematics Quantenmechanisches System (DE-588)4300046-0 gnd Vielteilchensystem (DE-588)4063491-7 gnd Mehrskalenanalyse (DE-588)4416235-2 gnd |
topic_facet | Multiscale modeling Functional Analysis Mathematical Methods in Physics Probability Theory and Stochastic Processes Applications of Mathematics Quantenmechanisches System Vielteilchensystem Mehrskalenanalyse |
url | https://doi.org/10.1007/978-1-4614-8226-0 |
volume_link | (DE-604)BV013823265 |
work_keys_str_mv | AT culaevskijva multiscaleanalysisforrandomquantumsystemswithinteraction AT suchovjurijm multiscaleanalysisforrandomquantumsystemswithinteraction |