Computational physics: simulation of classical and quantum systems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham [u.a.]
Springer
2013
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Graduate texts in physics
|
Schlagworte: | |
Online-Zugang: | Klappentext Inhaltsverzeichnis |
Beschreibung: | XVIII, 454 S. Ill., graph. Darst. |
ISBN: | 9783319004006 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041127412 | ||
003 | DE-604 | ||
005 | 20131113 | ||
007 | t | ||
008 | 130704s2013 ad|| |||| 00||| eng d | ||
020 | |a 9783319004006 |9 978-3-319-00400-6 | ||
035 | |a (OCoLC)859021265 | ||
035 | |a (DE-599)BVBBV041127412 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-91G |a DE-19 |a DE-703 |a DE-20 |a DE-83 | ||
082 | 0 | |a 530.0285 |2 22/ger | |
084 | |a SK 955 |0 (DE-625)143274: |2 rvk | ||
084 | |a ST 630 |0 (DE-625)143685: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
084 | |a PHY 016f |2 stub | ||
100 | 1 | |a Scherer, Philipp O. J. |e Verfasser |0 (DE-588)110745108 |4 aut | |
245 | 1 | 0 | |a Computational physics |b simulation of classical and quantum systems |c Philipp O. J. Scherer |
250 | |a 2. ed. | ||
264 | 1 | |a Cham [u.a.] |b Springer |c 2013 | |
300 | |a XVIII, 454 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Graduate texts in physics | |
650 | 0 | 7 | |a Computerphysik |0 (DE-588)4273564-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Computerphysik |0 (DE-588)4273564-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-319-00401-3 |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026103299&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026103299&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-026103299 |
Datensatz im Suchindex
_version_ | 1804150519080419328 |
---|---|
adam_text | Contents
Part I Numerical Methods
1
Error Analysis
.............................. 3
1
.1
Machine Numbers and Rounding Errors
.............. 3
1.2
Numerical Errors of Elementary Floating Point Operations
..... 6
1.2.1
Numerical Extinction
.................... 7
1.2.2
Addition
........................... 8
1.2.3
Multiplication
........................ 9
1.3
Error Propagation
.......................... 9
1.4
Stability of Iterative Algorithms
................... 11
1.5
Example: Rotation
.......................... 12
1.6
Truncation Error
........................... 13
1.7
Problems
............................... 14
2
Interpolation
............................... 15
2.1
Interpolating Functions
....................... 15
2.2
Polynomial Interpolation
...................... 16
2.2.1 Lagrange
Polynomials
.................... 17
2.2.2
В
ary
centric
Lagrange
Interpolation
............. 17
2.2.3
Newton s Divided Differences
................ 18
2.2.4
Neville Method
....................... 20
2.2.5
Error of Polynomial Interpolation
.............. 21
2.3
Spline Interpolation
......................... 22
2.4
Rational Interpolation
........................ 25
2.4.1
Padé
Approximant
...................... 25
2.4.2
Barycentric Rational Interpolation
............. 27
2.5
Multivariate Interpolation
...................... 32
2.6
Problems
............................... 33
3
Numerical Differentiation
........................ 37
3.1
One-Sided Difference Quotient
................... 37
3.2
Central Difference Quotient
..................... 38
xi
xii Contents
3.3 Extrapolation
Methods........................
39
3.4 Higher Derivatives.......................... 41
3.5
Partial
Derivatives
of Multivariate Functions
............ 42
3.6 Problems............................... 43
4
Numerical
Integration.......................... 45
4.1
Equidistant
Sample Points...................... 46
4.1.1
Closed Newton-Cotes Formulae
............... 46
4.1.2
Open Newton-Cotes Formulae
............... 48
4.1.3
Composite Newton-Cotes Rules
............... 48
4.1.4
Extrapolation Method (Romberg Integration)
........ 49
4.2
Optimized Sample Points
...................... 50
4.2.1
Clenshaw-Curtis Expressions
................ 50
4.2.2
Gaussian Integration
..................... 52
4.3
Problems
............................... 56
5
Systems of Inhomogeneous Linear Equations
............. 59
5.1
Gaussian Elimination Method
.................... 60
5.1.1
Pivoting
........................... 63
5.1.2
Direct
LU
Decomposition
.................. 63
5.2
QR Decomposition
......................... 64
5.2.1
QR Decomposition by Orthogonalization
.......... 64
5.2.2
QR Decomposition by Householder Reflections
...... 66
5.3
Linear Equations with Tridiagonal Matrix
.............. 69
5.4
Cyclic Tridiagonal Systems
..................... 71
5.5
Iterative Solution of Inhomogeneous Linear Equations
....... 73
5.5.1
General Relaxation Method
................. 73
5.5.2
Jacobi Method
........................ 73
5.5.3
Gauss-Seidel Method
.................... 74
5.5.4
Damping and Successive Over-Relaxation
......... 75
5.6
Conjugate Gradients
......................... 76
5.7
Matrix Inversion
........................... 77
5.8
Problems
............................... 78
6
Roots and Extremal Points
........................ 83
6.1
Root Finding
............................. 83
6.1.1
Bisection
........................... 84
6.1.2 Regula
Falsi
(False Position) Method
............ 85
6.1.3
Newton-Raphson Method
.................. 85
6.1.4
Secant Method
........................ 86
6.1.5
Interpolation
......................... 87
6.1.6
Inverse Interpolation
..................... 88
6.1.7
Combined Methods
..................... 91
6.1.8
Multidimensional Root Finding
............... 97
6.1.9
Quasi-Newton
Methods
................... 98
Contents xiii
6.2
Function Minimization
....................... 99
6.2.1
The Ternary Search Method
................. 99
6.2.2
The Golden Section Search Method (Brent s Method)
... 101
6.2.3
Minimization in Multidimensions
.............. 106
6.2.4
Steepest Descent Method
.................. 106
6.2.5
Conjugate Gradient Method
................. 107
6.2.6
Newton-Raphson Method
.................. 107
6.2.7
Quasi-Newton
Methods
................... 108
6.3
Problems
............................... 110
Fourier Transformation
........
7.1
Fourier Integral and Fourier Series
7.2
Discrete Fourier Transformation
. .
7.2.1
Trigonometric Interpolation
7.2.2
Real Valued Functions
13
13
14
16
18
7.2.3
Approximate Continuous Fourier Transformation
..... 119
7.3
Fourier Transform Algorithms
.................... 120
7.3.1
Goertzel s Algorithm
.................... 120
7.3.2
Fast Fourier Transformation
................. 121
7.4
Problems
............................... 125
8
Random Numbers and Monte Carlo Methods
............. 127
8.1
Some Basic Statistics
........................ 127
8.1.1
Probability Density and Cumulative Probability Distribution
127
8.1.2
Histogram
.......................... 128
8.1.3
Expectation Values and Moments
.............. 129
8.1.4
Example: Fair Die
...................... 130
8Л.5
Normal Distribution
..................... 131
8.1.6
Multivariate Distributions
.................. 132
8.1.7
Central Limit Theorem
................... 133
8.1.8
Example: Binomial Distribution
............... 133
8.1.9
Average of Repeated Measurements
............. 134
8.2
Random Numbers
.......................... 135
8.2.1
Linear Congruent Mapping
................. 135
8.2.2
Marsaglia-Zamann Method
................. 135
8.2.3
Random Numbers with Given Distribution
......... 136
8.2.4
Examples
........................... 136
8.3
Monte Carlo Integration
....................... 138
8.3.1
Numerical Calculation of
π
................. 138
8.3.2
Calculation of an Integral
.................. 139
8.3.3
More General Random Numbers
.............. 140
8.4
Monte Carlo Method for Thermodynamic Averages
........ 141
8.4.1
Simple Sampling
....................... 141
8.4.2
Importance Sampling
.................... 142
8.4.3
Metropolis Algorithm
.................... 142
8.5
Problems
............................... 144
xiv
Contents
9
Eigenvalue Problems
........................... 147
9.1
Direct Solution
............................ 148
9.2
Jacobi Method
............................ 148
9.3
Tridiagonal Matrices
......................... 150
9.3.1
Characteristic Polynomial of a Tridiagonal Matrix
..... 151
9.3.2
Special Tridiagonal Matrices
................ 151
9.3.3
The QL Algorithm
..................... 156
9.4
Reduction to a Tridiagonal Matrix
.................. 157
9.5
Large Matrices
............................ 159
9.6
Problems
............................... 160
10
Data Fitting
................................ 161
10.1
Least Square Fit
........................... 162
10.1.1
Linear Least Square Fit
................... 163
10.1.2
Linear Least Square Fit with Orthogonalization
...... 165
10.2
Singular Value Decomposition
................... 167
10.2.1
Full Singular Value Decomposition
............. 168
10.2.2
Reduced Singular Value Decomposition
.......... 168
10.2.3
Low Rank Matrix Approximation
.............. 170
10.2.4
Linear Least Square Fit with Singular Value Decomposition
172
10.3
Problems
............................... 175
11
Discretization of Differential Equations
................ 177
11.1
Classification of Differential Equations
............... 178
11.1.1
Linear Second Order PDE
.................. 178
11.1.2
Conservation Laws
..................... 179
11.2
Finite Differences
.......................... 180
11.2.1
Finite Differences in Time
.................. 181
11.2.2
Stability Analysis
...................... 182
11.2.3
Method of Lines
....................... 183
11.2.4
Eigenvector Expansion
................... 183
11.3
Finite Volumes
............................ 185
11.3.1
Discretization of fluxes
................... 188
11.4
Weighted Residual Based Methods
................. 190
11.4.1
Point Collocation Method
.................. 191
.4.2
Sub-domain Method
.....................191
.4.3
Least Squares Method
....................192
.4.4
Galerkin Method
.......................192
11.5
Spectral and Pseudo-spectral Methods
............... 193
11.5.1
Fourier Pseudo-spectral Methods
.............. 193
11.5.2
Example: Polynomial Approximation
............ 194
11.6
Finite Elements
.......................... . 196
.6.1
One-Dimensional Elements
.................196
.6.2
Two- and Three-Dimensional Elements
...........197
.6.3
One-Dimensional Galerkin
FEM
..............201
11.7
Boundary Element Method
.....................204
Contents xv
12
Equations of Motion
...........................207
12.1
The State Vector
.......................... 208
12.2
Time Evolution of the State Vector
................ 209
12.3
Explicit Forward
Euler
Method
.................. 210
12.4
Implicit Backward
Euler
Method
................. 212
12.5
Improved
Euler
Methods
...................... 213
12.6
Taylor Series Methods
....................... 215
12.6.1
Nordsieck Predictor-Corrector Method
..........215
12.6.2
Gear Predictor-Corrector Methods
............217
12.7 Runge-
Kutta Methods
.......................217
12.7.1
Second Order Runge-Kutta Method
........... 218
12.7.2
Third Order Runge-Kutta Method
............ 218
12.7.3
Fourth Order Runge-Kutta Method
............ 219
12.8
Quality Control and Adaptive Step Size Control
......... 220
12.9
Extrapolation Methods
....................... 221
12.10
Linear Multistep Methods
..................... 222
12.10.1
Adams-Bashforth Methods
................222
12.10.2
Adams-Moulton Methods
.................223
12.10.3
Backward Differentiation (Gear) Methods
........223
12.10.4
Predictor-Corrector Methods
...............224
12.11
Verlet
Methods
...........................225
12.11.1
Liouville Equation
.................... 225
12.11.2
Split-Operator Approximation
.............. 226
12.11.3
Position
Verlet
Method
.................. 227
12.11.4
Velocity
Verlet
Method
.................. 227
12.11.5 Stornier-
Verlet
Method
.................. 228
12.11.6
Error Accumulation for the
Störmer-Verlet
Method
. . . 229
12.11.7
Beeman s Method
..................... 230
12.11.8
The Leapfrog Method
................... 231
12.12
Problems
.............................. 232
Part II Simulation of Classical and Quantum Systems
13
Rotational Motion
............................239
13.1
Transformation to a Body Fixed Coordinate System
.......239
13.2
Properties of the Rotation Matrix
.................240
13.3
Properties of W, Connection with the Vector of Angular Velocity
242
13.4
Transformation Properties of the Angular Velocity
........244
13.5
Momentum and Angular Momentum
...............246
13.6
Equations of Motion of a Rigid Body
...............246
13.7
Moments of Inertia
.........................247
13.8
Equations of Motion for a Rotor
..................248
13.9
Explicit Methods
..........................248
13.10
Loss of Orthogonality
.......................250
13.11
Implicit Method
..........................251
13.12
Kinetic Energy of a Rotor
.....................255
xvi Contents
13.13 Parametrization
by Euler
Angles
.................. 255
13.14
Cayley-Klein Parameters, Quaternions,
Euler
Parameters
..... 256
13.15
Solving the Equations of Motion with Quaternions
........ 259
13.16
Problems
.............................. 260
14
Molecular Mechanics
...........................263
14.1
Atomic Coordinates
........................264
14.2
Force Fields
............................266
14.2.1
Intramolecular Forces
................... 267
14.2.2
Intermolecular Interactions
................ 269
14.3
Gradients
.............................. 270
14.4
Normal Mode Analysis
....................... 274
14.4.1
Harmonic Approximation
................. 274
14.5
Problems
.............................. 276
15
Thermodynamic Systems
........................279
15.1
Simulation of a Lennard-Jones Fluid
...............279
15.1.1
Integration of the Equations of Motion
.......... 280
15.1.2
Boundary Conditions and Average Pressure
....... 281
15.1.3
Initial Conditions and Average Temperature
....... 281
15.1.4
Analysis of the Results
.................. 282
15.2
Monte Carlo Simulation
...................... 287
15.2.1
One-Dimensional Ising Model
..............287
15.2.2
Two-Dimensional Ising Model
..............289
15.3
Problems
..............................290
16
Random Walk and Brownian Motion
..................293
16.1
Markovian Discrete Time Models
................. 293
16.2
Random Walk in One Dimension
................. 294
16.2.1
Random Walk with Constant Step Size
.......... 295
16.3
The Freely Jointed Chain
...................... 296
16.3.1
Basic Statistic Properties
................. 297
16.3.2
Gyration Tensor
...................... 299
16.3.3
Hookean Spring Model
.................. 300
16.4
Langevin
Dynamics
........................ 301
16.5
Problems
.............................. 303
17
Electrostatics
...............................305
17.1
Poisson
Equation
..........................305
17.1.1
Homogeneous Dielectric Medium
............ 306
17.1.2
Numerical Methods for the
Poisson
Equation
...... 307
17.1.3
Charged Sphere
...................... 309
17.1.4
Variables
......................... 311
17.1.5
Discontinuous
ε
...................... 313
17.1.6
Sol vation Energy of a Charged Sphere
.......... 314
17.1.7
The Shifted Grid Method
................. 314
Contents xvii
17.2 Poisson-Boltzmann
Equation....................
315
17.2.1
Linearization of the
Poisson-BoItzmann
Equation
..... 317
17.2.2
Discretization of the Linearized Poisson-Boltzmann
Equation
........................... 318
17.3
Boundary Element Method for the
Poisson
Equation
........ 318
17.3.1
Integral Equations for the Potential
............. 318
17.3.2
Calculation of the Boundary Potential
............ 321
17.4
Boundary Element Method for the Linearized Poisson-Boltzmann
Equation
............................... 324
17.5
Electrostatic Interaction Energy (Onsager Model)
......... 325
17.5.1
Example: Point Charge in a Spherical Cavity
........ 326
17.6
Problems
............................... 327
18
Waves
................................... 329
18.1
Classical Waves
........................... 329
18.2
Spatial Discretization in One Dimension
.............. 332
18.3
Solution by an Eigenvector Expansion
............... 334
18.4
Discretization of Space and Time
.................. 337
18.5
Numerical Integration with a Two-Step Method
.......... 338
18.6
Reduction to a First Order Differential Equation
.......... 340
18.7
Two-Variable Method
........................ 343
18.7.1
Leapfrog Scheme
...................... 343
18.7.2
Lax-Wendroff Scheme
.................... 345
18.7.3
Crank-Nicolson Scheme
................... 347
18.8
Problems
............................... 349
19
Diffusion
.................................. 351
19.1
Particle Flux and Concentration Changes
.............. 351
19.2
Diffusion in One Dimension
..................... 353
19.2.1
Explicit
Euler
(Forward Time Centered Space) Scheme
. . 353
19.2.2
Implicit
Euler
(Backward Time Centered Space) Scheme
. 355
19.2.3
Crank-Nicolson Method
................... 357
19.2.4
Error Order Analysis
..................... 358
19.2.5
Finite Element Discretization
................ 360
19.3
Split-Operator Method for Multidimensions
............ 360
19.4
Problems
............................... 362
20
Nonlinear Systems
............................ 363
20.1
Iterated Functions
.......................... 364
20.1.1
Fixed Points and Stability
.................. 364
20.1.2
The Lyapunov Exponent
................... 366
20.1.3
The Logistic Map
...................... 367
20.1.4
Fixed Points of the Logistic Map
.............. 367
20.1.5
Bifurcation Diagram
..................... 369
20.2
Population Dynamics
........................ 370
20.2.1
Equilibria and Stability
................... 370
20.2.2
The Continuous Logistic Model
............... 371
xviii Contents
20.3
Lotka-
Volteira
Model........................ 372
20.3.1
Stability Analysis
...................... 372
20.4
Functional Response
......................... 373
20.4.1
Holling-Tanner Model
.................... 375
20.5
Reaction-Diffusion Systems
..................... 378
20.5.1
General Properties of Reaction-Diffusion Systems
..... 378
20.5.2
Chemical Reactions
..................... 378
20.5.3
Diffusive Population Dynamics
............... 379
20.5.4
Stability Analysis
...................... 379
20.5.5
Lotka-
Volterra Model with Diffusion
............ 380
20.6
Problems
............................... 382
21
Simple Quantum Systems
........................385
21.1
Pure and Mixed Quantum States
...................386
21.1.1
Wavefunctions
........................387
21.1.2
Density Matrix for an Ensemble of Systems
........387
21.1.3
Time Evolution of the Density Matrix
............388
21.2
Wave Packet Motion in One Dimension
...............389
21.2.1
Discretization of the Kinetic Energy
............ 390
21.2.2
Time Evolution
....................... 392
21.2.3
Example: Free Wave Packet Motion
............. 402
21.3
Few-State Systems
.......................... 403
21.3.1
Two-State System
...................... 405
21.3.2
Two-State System with Time Dependent Perturbation
. . . 408
21.3.3
Superexchange Model
.................... 410
21.3.4
Ladder Model for Exponential Decay
............ 412
21.3.5
Landau-Zener Model
.................... 414
21.4
The Dissipative Two-State System
................. 416
21.4.1
Equations of Motion for a Two-State System
........416
21.4.2
The Vector Model
......................417
21.4.3
TheSpin-i System
.....................418
21
Λ
A Relaxation Processes
—
The Bloch Equations
........420
21.4.5
The Driven Two-State System
................421
21.4.6
Elementary Qubit Manipulation
...............428
21.5
Problems
...............................430
Appendix I Performing the Computer Experiments
........... 433
Appendix II Methods and Algorithms
................... 435
References
................................... 441
Index
...................................... 449
Graduate Texts in Physics
Philipp
OJ.
Scherer
Computational Physics
Simulation of Classical and Quantum Systems, Second Edition
This textbook presents basic and advanced computational physics in a very didactic style. It con¬
tains very-well-presented and simple mathematical descriptions of many of the most important
algorithms used in computational physics. Many
cîear
mathematical descriptions of important
techniques in computational physics are given. The first part of the hook discusses the basic
numerical methods. A large number of exercises and computer experiments allows to study the
properties of these methods. In addition to polynomial interpolation by the methods of
Lagrange
and Newton baryeentric rational interpolation is explained. Besides the classical root finding
methods, inverse interpolation is discussed, together with the popular combined methods by
Пеккег
and Brent and a not so well known improvement by Chandrupatla. A general crmpter on
the numerical treatment of differential equations provides methods of finite differences, finite
volumes, finite elements and boundary elements together with spectral methods and weighted
residual based methods. The book uses a rather general concept for the equation of motion
which can be applied to ordinary and partial differential equations. Several classes of integration
methods are discussed including not only the standard Kuler and
Runge
Kulta
method but also
multislep methods and the class of
Verlet
methods which is introduced by studying the motion in
I.iouville space. A comparison of several methods for quantum wavepacket motion is performed,
containing pseudo-spectral methods, finite differences methods, rational approximation to the
time evolution operator, second order differencing and split operator methods,
lhe
second part
concentrates on simulation of classical and quantum systems.
The book gives simple but
non
trivial examples from a broad range of physical topucs trying to
give the reader insight into the numerical treatment but also the simulated problems. Rotational
motion is treated in much detail to describe the motion of rigid rotors which can be just a simple
spinning top or a collection of molecules or planets. Ihe behaviour of simple quantum systems
is studied thoroughly. One focus is on a two level system in an external field. Solution of the
Bloch equations allows the simulation of a quantum bit and
lo
understand elementary principles
from quantum optics. As an example of a ihermodynamic system, the Lennard-Jones fluid is
simulated. Ihe principles of molecular dynamics are shown vith practical simulations. A second
thermodynamic topic is the Ising model in one and two dimensions. The solution of the
Pois¬
son
Boltzman equation is discussed in detail which is very important in Biophysics as well as in
semiconductor physics. Besides the standard finite differences methods, also modern boundary
element methods are discussed. Wave?, and diffusion processes are simulated.
Différent
methods
are compared with regard to their stability and efficiency. Random walk models are studied with
application to basic polymer physics. Nonlinear systems are discussed in detail with application
to population dynamics and reaction diffusion systems. Ihe exercises to the book are realized
as computer experiments. A large number of Java applets is provided. It can be tried out by the
reader even without programming skills. Ihe interested reader can modify the programs with
the help of the freely available and
platform
independent programming environment netbeans .
Physics
►
springerxom
MATERIALS
extras.spring
er.
com
|
any_adam_object | 1 |
author | Scherer, Philipp O. J. |
author_GND | (DE-588)110745108 |
author_facet | Scherer, Philipp O. J. |
author_role | aut |
author_sort | Scherer, Philipp O. J. |
author_variant | p o j s poj pojs |
building | Verbundindex |
bvnumber | BV041127412 |
classification_rvk | SK 955 ST 630 |
classification_tum | PHY 016f |
ctrlnum | (OCoLC)859021265 (DE-599)BVBBV041127412 |
dewey-full | 530.0285 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.0285 |
dewey-search | 530.0285 |
dewey-sort | 3530.0285 |
dewey-tens | 530 - Physics |
discipline | Physik Informatik Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01890nam a2200421 c 4500</leader><controlfield tag="001">BV041127412</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131113 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130704s2013 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319004006</subfield><subfield code="9">978-3-319-00400-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859021265</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041127412</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.0285</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 955</subfield><subfield code="0">(DE-625)143274:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 630</subfield><subfield code="0">(DE-625)143685:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 016f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Scherer, Philipp O. J.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110745108</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational physics</subfield><subfield code="b">simulation of classical and quantum systems</subfield><subfield code="c">Philipp O. J. Scherer</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 454 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate texts in physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computerphysik</subfield><subfield code="0">(DE-588)4273564-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Computerphysik</subfield><subfield code="0">(DE-588)4273564-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-319-00401-3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026103299&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026103299&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026103299</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV041127412 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:40:12Z |
institution | BVB |
isbn | 9783319004006 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026103299 |
oclc_num | 859021265 |
open_access_boolean | |
owner | DE-11 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-83 |
owner_facet | DE-11 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-703 DE-20 DE-83 |
physical | XVIII, 454 S. Ill., graph. Darst. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Springer |
record_format | marc |
series2 | Graduate texts in physics |
spelling | Scherer, Philipp O. J. Verfasser (DE-588)110745108 aut Computational physics simulation of classical and quantum systems Philipp O. J. Scherer 2. ed. Cham [u.a.] Springer 2013 XVIII, 454 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Graduate texts in physics Computerphysik (DE-588)4273564-6 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Computerphysik (DE-588)4273564-6 s DE-604 Erscheint auch als Online-Ausgabe 978-3-319-00401-3 Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026103299&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Klappentext Digitalisierung UB Bayreuth - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026103299&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Scherer, Philipp O. J. Computational physics simulation of classical and quantum systems Computerphysik (DE-588)4273564-6 gnd |
subject_GND | (DE-588)4273564-6 (DE-588)4123623-3 |
title | Computational physics simulation of classical and quantum systems |
title_auth | Computational physics simulation of classical and quantum systems |
title_exact_search | Computational physics simulation of classical and quantum systems |
title_full | Computational physics simulation of classical and quantum systems Philipp O. J. Scherer |
title_fullStr | Computational physics simulation of classical and quantum systems Philipp O. J. Scherer |
title_full_unstemmed | Computational physics simulation of classical and quantum systems Philipp O. J. Scherer |
title_short | Computational physics |
title_sort | computational physics simulation of classical and quantum systems |
title_sub | simulation of classical and quantum systems |
topic | Computerphysik (DE-588)4273564-6 gnd |
topic_facet | Computerphysik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026103299&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026103299&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT schererphilippoj computationalphysicssimulationofclassicalandquantumsystems |