Verblüfft?!: mathematische Beweise unglaublicher Ideen
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German English |
Veröffentlicht: |
Berlin ; Heidelberg
Springer
2013
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XIV, 186 S. graph. Darst. 24 cm |
ISBN: | 9783642323188 3642323189 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV041076356 | ||
003 | DE-604 | ||
005 | 20131115 | ||
007 | t | ||
008 | 130607s2013 gw d||| |||| 00||| ger d | ||
015 | |a 12,N43 |2 dnb | ||
015 | |a 13,A23 |2 dnb | ||
016 | 7 | |a 1027027377 |2 DE-101 | |
020 | |a 9783642323188 |c kart. : EUR 16.95 (DE), EUR 17.43 (AT), sfr 21.50 (freier Pr.) |9 978-3-642-32318-8 | ||
020 | |a 3642323189 |9 3-642-32318-9 | ||
035 | |a (OCoLC)820454661 | ||
035 | |a (DE-599)DNB1027027377 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 1 | |a ger |h eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-29 |a DE-83 |a DE-Aug4 |a GYN01 | ||
082 | 0 | |a 510 |2 22/ger | |
084 | |a SN 100 |0 (DE-625)143330: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Havil, Julian |d 1952- |e Verfasser |0 (DE-588)139236805 |4 aut | |
240 | 1 | 0 | |a Nonplussed! |
245 | 1 | 0 | |a Verblüfft?! |b mathematische Beweise unglaublicher Ideen |c Julian Havil |
264 | 1 | |a Berlin ; Heidelberg |b Springer |c 2013 | |
300 | |a XIV, 186 S. |b graph. Darst. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Paradoxon |0 (DE-588)4044593-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Problem |0 (DE-588)4114530-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beweis |0 (DE-588)4132532-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unterhaltungsmathematik |0 (DE-588)4124357-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4144384-6 |a Beispielsammlung |2 gnd-content | |
689 | 0 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | 1 | |a Paradoxon |0 (DE-588)4044593-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Mathematisches Problem |0 (DE-588)4114530-6 |D s |
689 | 1 | 1 | |a Beweis |0 (DE-588)4132532-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Paradoxon |0 (DE-588)4044593-8 |D s |
689 | 2 | 1 | |a Beweis |0 (DE-588)4132532-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Paradoxon |0 (DE-588)4044593-8 |D s |
689 | 3 | 1 | |a Unterhaltungsmathematik |0 (DE-588)4124357-2 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=4164640&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026053227&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-026053227 |
Datensatz im Suchindex
_version_ | 1806324998306004992 |
---|---|
adam_text |
IMAGE 1
INHALTSVERZEICHNIS
EINLEITUNG 1
1 D R E I T E N N I S - P A R A D O X A 5
2 D E R A U F W AE R T S R O L L E R 17
3 D A S G E B U R T S T A G S P A R A D O X O N 25
4 D R E H E N E I N E S T I S C H E S 37
5 D E R A N G E M E N T S 45
6 C O N W A Y S C H E Q U E R B O A R D - A R M E E 59
7 W E R F E N E I N E R N A D E L 65
8 T O R R I C E I I I S T R O M P E T E 79
9 N I C H T T R A N S I T I V E E F F E K T E 89
10 E I N V E R F O L G U N G S P R O B L E M 101
11 P A R R O N D O S P I E L E 111
12 H Y P E R D I M E N S I O N E N 123
13 F R E I T A G , D E R 13 145
14 F R A C T R A N 155
D I E M O T I V E 171
A D A S P R I N Z I P D E R E I N S C H L I E SS U N G U N D A U S S C H
L I E SS U N G 177
HTTP://D-NB.INFO/1027027377
IMAGE 2
X I V INHALTSVERZEICHNIS
B D I E B I N O M I S C H E U M K E H R F O R M E L 179
C O B E R F L AE C H E U N D B O G E N L AE N G E 183
N A M E N S - U N D S A C H V E R Z E I C H N I S 185 |
any_adam_object | 1 |
author | Havil, Julian 1952- |
author_GND | (DE-588)139236805 |
author_facet | Havil, Julian 1952- |
author_role | aut |
author_sort | Havil, Julian 1952- |
author_variant | j h jh |
building | Verbundindex |
bvnumber | BV041076356 |
classification_rvk | SN 100 |
ctrlnum | (OCoLC)820454661 (DE-599)DNB1027027377 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV041076356</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131115</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">130607s2013 gw d||| |||| 00||| ger d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">12,N43</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">13,A23</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1027027377</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642323188</subfield><subfield code="c">kart. : EUR 16.95 (DE), EUR 17.43 (AT), sfr 21.50 (freier Pr.)</subfield><subfield code="9">978-3-642-32318-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3642323189</subfield><subfield code="9">3-642-32318-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)820454661</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1027027377</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">ger</subfield><subfield code="h">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">GYN01</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SN 100</subfield><subfield code="0">(DE-625)143330:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Havil, Julian</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139236805</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Nonplussed!</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Verblüfft?!</subfield><subfield code="b">mathematische Beweise unglaublicher Ideen</subfield><subfield code="c">Julian Havil</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 186 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Paradoxon</subfield><subfield code="0">(DE-588)4044593-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Problem</subfield><subfield code="0">(DE-588)4114530-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unterhaltungsmathematik</subfield><subfield code="0">(DE-588)4124357-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4144384-6</subfield><subfield code="a">Beispielsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Paradoxon</subfield><subfield code="0">(DE-588)4044593-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematisches Problem</subfield><subfield code="0">(DE-588)4114530-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Paradoxon</subfield><subfield code="0">(DE-588)4044593-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Paradoxon</subfield><subfield code="0">(DE-588)4044593-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Unterhaltungsmathematik</subfield><subfield code="0">(DE-588)4124357-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=4164640&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026053227&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026053227</subfield></datafield></record></collection> |
genre | (DE-588)4144384-6 Beispielsammlung gnd-content |
genre_facet | Beispielsammlung |
id | DE-604.BV041076356 |
illustrated | Illustrated |
indexdate | 2024-08-03T00:42:36Z |
institution | BVB |
isbn | 9783642323188 3642323189 |
language | German English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-026053227 |
oclc_num | 820454661 |
open_access_boolean | |
owner | DE-29 DE-83 DE-Aug4 GYN01 |
owner_facet | DE-29 DE-83 DE-Aug4 GYN01 |
physical | XIV, 186 S. graph. Darst. 24 cm |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Springer |
record_format | marc |
spelling | Havil, Julian 1952- Verfasser (DE-588)139236805 aut Nonplussed! Verblüfft?! mathematische Beweise unglaublicher Ideen Julian Havil Berlin ; Heidelberg Springer 2013 XIV, 186 S. graph. Darst. 24 cm txt rdacontent n rdamedia nc rdacarrier Paradoxon (DE-588)4044593-8 gnd rswk-swf Mathematisches Problem (DE-588)4114530-6 gnd rswk-swf Beweis (DE-588)4132532-1 gnd rswk-swf Unterhaltungsmathematik (DE-588)4124357-2 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf (DE-588)4144384-6 Beispielsammlung gnd-content Mathematik (DE-588)4037944-9 s Paradoxon (DE-588)4044593-8 s 1\p DE-604 Mathematisches Problem (DE-588)4114530-6 s Beweis (DE-588)4132532-1 s 2\p DE-604 3\p DE-604 Unterhaltungsmathematik (DE-588)4124357-2 s 4\p DE-604 X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=4164640&prov=M&dok_var=1&dok_ext=htm Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026053227&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Havil, Julian 1952- Verblüfft?! mathematische Beweise unglaublicher Ideen Paradoxon (DE-588)4044593-8 gnd Mathematisches Problem (DE-588)4114530-6 gnd Beweis (DE-588)4132532-1 gnd Unterhaltungsmathematik (DE-588)4124357-2 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4044593-8 (DE-588)4114530-6 (DE-588)4132532-1 (DE-588)4124357-2 (DE-588)4037944-9 (DE-588)4144384-6 |
title | Verblüfft?! mathematische Beweise unglaublicher Ideen |
title_alt | Nonplussed! |
title_auth | Verblüfft?! mathematische Beweise unglaublicher Ideen |
title_exact_search | Verblüfft?! mathematische Beweise unglaublicher Ideen |
title_full | Verblüfft?! mathematische Beweise unglaublicher Ideen Julian Havil |
title_fullStr | Verblüfft?! mathematische Beweise unglaublicher Ideen Julian Havil |
title_full_unstemmed | Verblüfft?! mathematische Beweise unglaublicher Ideen Julian Havil |
title_short | Verblüfft?! |
title_sort | verblufft mathematische beweise unglaublicher ideen |
title_sub | mathematische Beweise unglaublicher Ideen |
topic | Paradoxon (DE-588)4044593-8 gnd Mathematisches Problem (DE-588)4114530-6 gnd Beweis (DE-588)4132532-1 gnd Unterhaltungsmathematik (DE-588)4124357-2 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | Paradoxon Mathematisches Problem Beweis Unterhaltungsmathematik Mathematik Beispielsammlung |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=4164640&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026053227&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT haviljulian nonplussed AT haviljulian verblufftmathematischebeweiseunglaublicherideen |